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Aim. COVID-19 has caused large death tolls all over the world. Accurate diagnosis is of significant importance for early treatment.
Methods. In this study, we proposed a novel PSSPNN model for classification between COVID-19, secondary pulmonary
tuberculosis, community-captured pneumonia, and healthy subjects. PSSPNN entails five improvements: we first proposed the
n-conv stochastic pooling module. Second, a novel stochastic pooling neural network was proposed. Third, PatchShuffle was
introduced as a regularization term. Fourth, an improved multiple-way data augmentation was used. Fifth, Grad-CAM was
utilized to interpret our AI model. Results. The 10 runs with random seed on the test set showed our algorithm achieved a
microaveraged F1 score of 95.79%. Moreover, our method is better than nine state-of-the-art approaches. Conclusion. This
proposed PSSPNN will help assist radiologists to make diagnosis more quickly and accurately on COVID-19 cases.

1. Introduction

COVID-19 is a type of disease caused by a new strain of
coronavirus. “CO” means corona, “VI” virus, and “D” dis-
ease. Up to 22 December 2020, COVID-19 has caused more
than 78.0 million confirmed cases and over 1.71 million
deaths (US 326.5 k, Brazil 188.2 k, India 146.1 k, Mexico
119.4 k, Italy 69.8 k, and UK 68.3 k).

To diagnose COVID-19, two methods exist: (i) real-time
reverse transcriptase PCR with nasopharyngeal swab samples
to test the existence of RNA fragments and (ii) chest imaging
(CI) examines the evidence of COVID-19. The first type of
rRT-PCRmethod needs to wait for a few days to get the results,

while the second type of CI approach could get quick results
within minutes. The CI approaches have several advantages
compared to rRT-PCR. First, the swab may be contaminated
[1, 2]. Second, CI can detect the lesions of lungs where
“ground-glass opacity (GGO)” will be observed to distinguish
COVID-19 from healthy subjects. Third, CI can provide an
immediate result as soon as imaging is complete. Fourth,
reports show that chest computed tomography (CCT), one type
of CI approach, can detect 97% of COVID-19 infections [3].

Currently, there are three types of CI approaches: chest X-
ray (CXR) [4], chest CT (CCT), and chest ultrasound (CUS)
[5]. Among all three types of approaches, CCT can provide
the finest resolution than the other two CI approaches,
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allowing visualization of extremely small nodules in the lung.
The additional advantage of CCT is that it can provide high-
quality, three-dimensional chest data where radiologists can
clearly view the COVID-19 lesions, which may be obscure in
the other two CI approaches.

However, manual labeling by human experts is tedious,
labor-intensive, and time-consuming [6]. Besides, the labeling
performances are easily affected by interexpert and intraexpert
factors (e.g., emotion, tiredness, and lethargy). Moreover, the
labeling throughputs of radiologists are not comparable with
artificial intelligence (AI) models. For example, senior radiol-
ogists may diagnose one scanning within five minutes, but
AI can analyze thousands of samples within one minute. Par-
ticularly, early lesions are small and similar to surrounding
normal tissues, which make them more challenging to mea-
sure and hence can potentially be neglected by radiologists.

Traditional AI methods have successfully been applied in
manymedical fields. For instance,Wang et al. [7] chose wavelet
packet Tsallis entropy as a feature descriptor and employed a
real-coded biogeography-based optimization (RCBO) classi-
fier. Jiang and Zhang [8] proposed a 6-level convolutional neu-
ral network (6L-CNN) for therapy and rehabilitation. Their
performances were improved by replacing the traditional recti-
fied linear unit with a leaky rectified linear unit. Fulton et al. [9]
used ResNet-50 (RN-50) to classify Alzheimer’s disease with
and without imagery. The authors found that ResNet-50
models help identify AD patients. Guo and Du [10] utilized a
ResNet-18 (RN-18) model to recognize thyroid ultrasound
standard plane (TUSP), achieving a classification accuracy of
83.88%. The experiments verified the effectiveness of RN-18.
The aforementioned four algorithms can be transferred to the
multiclass classification task of COVID-19 diagnosis.

On the COVID-19 datasets, several recent publications
reported promising results. For example, Cohen et al. [11]
proposed a COVID severity score network (CSSNet), which
achieved a mean absolute error (MAE) of 1.14 on geographic
extent score and an MAE of 0.78 on lung opacity score. Li
et al. [12] developed a fully automatic model (COVNet) to
detect COVID-19 using chest CT and evaluated its perfor-
mance. Wang et al. [13] proposed a 3D deep convolutional
neural network to detect COVID-19 (DeCovNet). Zhang
et al. [14] proposed a seven-layer convolutional neural net-
work for COVID-19 diagnosis (7L-CCD). Their perfor-
mance achieved an accuracy of 94:03 ± 0:80 for the binary
classification task (COVID-19 against healthy subjects). Ko
et al. [15] proposed a fast-track COVID-19 classification net-
work (FCONet). For the sake of the page limit, the details of
those methods are not described, but we shall compare our
method with those state-of-the-art methods in the following
sections. Wang et al. [16] presented a CCSHNet via transfer
learning and discriminant correlation analysis.

Our study’s inspiration is to improve recognition
performances of COVID-19 infection in CCT images by
developing a novel deep neural network, PSSPNN, short for
PatchShuffle stochastic pooling neural network. Our contri-
butions entail the following five angles:

(i) The “n-conv stochastic pooling module (NCSPM)”
is proposed, which comprises n-times repetitions of

convolution layers and batch normalization layers,
followed by stochastic pooling

(ii) A novel “stochastic pooling neural network (SPNN)”
is proposed, the structure of which is inspired by
VGG-16

(iii) A more advanced neural network, PatchShuffle
SPNN (PSSPNN), is proposed where PatchShuffle
is introduced as the regularization term in the loss
function of SPNN

(iv) An improved multiple-way data augmentation is
utilized to help the network avoid overfitting

(v) Grad-CAM is used to show the explainable heatmap,
which displays association with lung lesions

2. Dataset

This retrospective study was exempt by Institutional Review
Board of local hospitals. Four types of CCT were used:
(i) COVID-19-positive patients, (ii) community-acquired
pneumonia (CAP), (iii) second pulmonary tuberculosis
(SPT), and (iv) healthy control (HC). Three diseased clas-
ses (COVID-19, CAP, and SPT) were chosen since they
are all infectious diseases of the chest regions. We intend
to include the fifth category (chest tumors) in our future
studies.

For each subject, nðkÞ slices of CCT were chosen via a
slice level selection (SLS) method. For the three diseased
groups (COVID-19, CAP, and SPT represented as k =
f1, 2, 3g), the slice displaying the largest number of lesions
and size was chosen. For HC subjects (k = 4), any slice within
the 3D image was randomly chosen. The slice-to-subject
ratio �n is defined as

�n kð Þ = NS kð Þ
NP kð Þ , k = 1,⋯, 4, ð1Þ

where NS stands for the number of slices via the SLS method
and NP is the number of patients.

In all, we enrolled 521 subjects and produced 1164
slice images using the SLS method. Table 1 lists the demo-
graphics of the four-category subject cohort with the
values of triplets ½�n,NP,NS�, where �n of the total set equals
to 2.23.

Three experienced radiologists (two juniors: C1 and C2
and one senior: C3) were convened to curate all the images.
Suppose xCCT means one CCT scan, Y stands for the labeling
of each individual radiologist. The last labeling YF of the
CCT scan xCCT is obtained by

YF xCCT
� �

=
Y C1, xCCT
� �

Y C1, xCCT
� �

== Y C2, xCCT
� �

MAV Yall xCCT
� �n o

otherwise

8<
: ,

ð2Þ
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where MAV denotes majority voting and Yall the labeling of
all radiologists, viz.,

Yall xCCT
� �

= Y C1, xCCT
� �

, Y C2, xCCT
� �

, Y C3, xCCT
� �� �

:

ð3Þ

The above two equations mean that in situations of
disagreement between the analyses of two junior radiologists
ðC1,C2Þ, we consult a senior radiologist ðC3Þ to reach a
MAV-type consensus. Data is available on request due to
privacy/ethical restrictions.

3. Methodology

Table 2 gives the abbreviation and full meanings in this study.
Section 3.1 shows the preprocessing procedure. Sections 3.2–
3.5 offer four improvements. Finally, Section 3.6 gives the
implementation, measure indicators, and explainable tech-
nology used in our method.

3.1. Preprocessing. The original raw dataset contained jV j
slice images fvaðiÞ, i = 1, 2,⋯,jV jg. The size of each image
was size½vaðiÞ� = 1024 × 1024 × 3. Figure 1 presents the pipe-
line for preprocessing of this dataset.

First, the color CCT images of four classes were con-
verted into grayscale by retaining the luminance channel
and obtaining the grayscale data set VB:

VB =Ogray VAð Þ
= vb 1ð Þ, vb 2ð Þ,⋯, vb ið Þ,⋯vb Vj jð Þf g,

ð4Þ

where Ogray means the grayscale operation.
In the second step, the histogram stretching (HS) was

utilized to increase the contrast of all images. Take the i-th
image vbðiÞ, i = 1, 2,⋯, jV j as an example; its minimum and
maximum grayscale values vlbðiÞ and vhbðiÞ were calculated
as follows:

vlb ið Þ =minWB
w=1 minHB

h=1 minCB
c=1vb i ∣w, h, cð Þ,

vhb ið Þ =maxWB
w=1 maxHB

h=1 maxCB
c=1vb i ∣w, h, cð Þ:

8<
: ð5Þ

Here, (w, h, c) means the index of width, height, and channel
directions along image vbðiÞ, respectively. ðWB,HB, CBÞ
means the maximum values of width, height, and channel

Original CCT image set V
A

HS V
C

Cropped V
D

Down-sampled V
E

Grayscaled V
B

COVID-19 CAP SPT HC

RGB to
grayscale

Histogram
stretch

Margin &
text crop

Resizing

Figure 1: Illustration of preprocessing.

Table 1: Subjects and images of four categories.

Class index Class name �n NP NS

1 COVID-19 2.27 125 284

2 CAP 2.28 123 281

3 SPT 2.18 134 293

4 HC 2.20 139 306

Total 2.23 521 1164

Table 2: Abbreviation and full name.

Abbreviation Full name

AP Average pooling

CAP Community-acquired pneumonia

CCT Chest computed tomography

CI Chest imaging

CXR Chest X-ray

CUS Chest ultrasound

DPD Discrete probability distribution

FCL Fully connected layer

FM Feature map

FMS Feature map size

HS Hyperparameter size

L2P l2-norm pooling

MA Microaveraged

MAV Majority voting

MDA Multiple-way data augmentation

MP Max pooling

NCSPM n-conv stochastic pooling module

NWL Number of weighted layers

SAPN Salt-and-pepper noise

SC Strided convolution

SLS Slice level selection

SP Stochastic pooling

SPNN Stochastic pooling neural network

SPT Second pulmonary tuberculosis

TCM Test confusion matrix
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to the image set VB. The new histogram stretched image set
VC was calculated as follows:

VC =OHS VBð Þ = vc ið Þ≝
vb ið Þ − vlb ið Þ
vhb ið Þ − vlb ið Þ

( )
, ð6Þ

where OHS stands for the HS operation.

In the third step, cropping was performed to remove the
checkup bed at the bottom area and eliminate the texts at the
margin regions. Cropped dataset VD is yielded as

VD =Ocrop VC , a1, a2, a3, a4½ �ð Þ
= vd 1ð Þ, vd 2ð Þ,⋯,vd ið Þ,⋯,vd Vj jð Þf g,

ð7Þ

(a) COVID-19 (b) CAP

(c) SPT (d) HC

Figure 2: Samples of four categories (three diseased and one healthy).

PM

L2P AP MP SP

3.3 1.4 4.1 9.4 2.6 7.1 9.3 2 0.6 0.08 0.03 0.1 0.24 0.07 0.18 0.25 0.05 0.02

0.14 0.21 0.1 0.01 0.19 0.14 0.14 0.16 0.2

0.05 0.23 0.07 0.02 0.09 0.06 0.05 0.06 0.07

0.06 0.16 0.09 0.14 0.16 0.07 0.06 0.09 0.08

0.08 0.16 0.14 0.19 0.16 0.19 0.08 0.14 0.17

0.16 0.03 0.12 0.03 0.02 0.03 0.16 0.12 0.1

0.06 0.09 0.06 0.06 0.02 0.27 0.19 0.13 0.01

0.07 0.14 0.11 0.01 0.18 0.12 0.08 0.07 0.16

0.09 0.19 0.18 0.1 0.01 0.22 0.07 0.05 0.24

2 9.3 2.9 0.8 3.4 2.5 1.7 2.1 2.5

5.6 8.6 4.1 0.5 7.6 5.5 5.1 6 7.4

3.9 9.7 5.4 6.4 7.4 3.2 3.5 5.1 4.3

9.7 2.1 7.2 1.5 0.9 1.5 8.8 6.5 5.6

4.9 9.8 8.7 8.7 7.4 8.9 4.5 8 9.8

2.7 4.3 3 2.1 0.7 9.3 7.1 4.8 0.2

4.4

5.28 5.29 4.96 4.59 4.38 4.08 9.3 9.4 9.3 5.6 7.6 6

7.34 5.97 6.57 6.82 5.1 6.23 9.8 8.9 9.8 9.8 6.4 8

5.64 4.95 4.96 5.21 3.86 4.19 9 9.3 9.2 4.3 7.7 4.8

9 8.4 3.6 0.5 7.7 2.7 1.8 9.2

3.5 6.4 5.2 0.3 6.2 4.3 3.2 2.8 5.9

Figure 3: Comparison of four different pooling techniques (red rectangle indicates the example discussed in Section 3.2).
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where Ocrop represents crop operation. Parameters ða1, a2,
a3, a4Þ mean pixels to be cropped from four directions of
the top, bottom, left, and right, respectively (unit: pixel).

In the fourth step, each image was downsampled to a size
of ½WE ,HE�, obtaining the resized image set VE as

VE =ODS VD, WE ,HE½ �ð Þ
= ve 1ð Þ, ve 2ð Þ,⋯, ve ið Þ,⋯ve Vj jð Þf g ð8Þ

where ODS : a↦ b represents the downsampling (DS) proce-
dure, in which b stands for the downsampled image of the
raw image a.

Figure 2 displays example images of the four categories,
in which three are diseased, and one is healthy. The original
size of each image in VA is 1024 × 1024 × 3, and the final pre-
processed image is 256 × 256 × 1.

3.2. Improvement I: n-conv Stochastic Pooling Module. First,
stochastic pooling (SP) [17] was introduced. In the standard
convolutional neural networks, pooling is an essential com-
ponent after each convolution layer, which was applied to
reduce the size of feature maps (FMs). SP was shown to give
better performance than average pooling and max pooling in
recent publications [18–21]. Recently, strided convolution
(SC) is commonly used, which also can shrink the FMs
[22, 23]. Nevertheless, SC could be considered a simple
pooling method, which always outputs the region’s fixed-
position value [24].

Suppose we have a postconvolution FM F = f ijði = 1,⋯,
M × P, j = 1,⋯,N ×QÞ. The FM can be separated into
M ×N blocks, in which every block has the size of P ×Q.
Now we focus on the block Bmn = fbðx, yÞ, x = 1,⋯,P, y = 1,
⋯,Qg which stands for the m-th row and n-th column
blocks.

The strided convolution (SC) traverses the input activa-
tion map with the strides, which equals the size of the block
ðP,QÞ, so here its output is set to

BSC
mn = b 1, 1ð Þ: ð9Þ

The l2-norm pooling (L2P), average pooling (AP), and
max pooling (MP) generate the l2-norm value, average value,
and maximum value within the block Bmn, respectively.

BL2P
mn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑P

x=1∑
Q
y=1b

2 x, yð Þ
P ×Q

s
,

BAP
mn =

1
P ×Q

〠
P

x=1
〠
Q

y=1
b x, yð Þ,

BMP
mn =maxPx=1 maxQy=1b x, yð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

Convolution layer 1

Batch normalization 1

Stochastic pooling

Convolution layer 2

Batch normalization 2

………

Convolution layer n

Batch normalization n

NCSPM

Probability map

Random variable r

Drawn sample r0

Output of position pos(r0)

Figure 4: Schematic of proposed NCSPM.

Table 3: Structure of proposed 11-layer SPNN.

Index Name NWL HS FMS

1 Input 256 × 256 × 1

2 NCSPM-1 2 3 × 3, 32½ � × 2 128 × 128 × 32

3 NCSPM-2 2 3 × 3, 32½ � × 2 64 × 64 × 32

4 NCSPM-3 2 3 × 3, 64½ � × 2 32 × 32 × 64

5 NCSPM-4 2 3 × 3, 64½ � × 2 16 × 16 × 64

6 NCSPM-5 1 3 × 3, 128½ � × 1 8 × 8 × 128

7 Flatten 1 × 1 × 8192

8 FCL-1 1 140 × 8192, 140 × 1 1 × 1 × 140

9 FCL-2 1 4 × 140, 4 × 1 1 × 1 × 4

10 Softmax 1 × 1 × 4

5Computational and Mathematical Methods in Medicine



The SP provides a solution to the shortcomings of AP
and MP. The AP outputs the average, so it will downscale
the largest value, where the important features may sit on.
On the other hand, MP reserves the maximum value but
worsens the overfitting problem. SP is a three-step procedure.
First, it generates the probability map (PM) for each entry in
the block Bmn.

pm x, yð Þ = b x, yð Þ
∑P

x=1∑
Q
y=1b x, yð Þ

,

s:t:〠
P

x=1
〠
Q

y=1
pm x, yð Þ = 1,

8>>>>><
>>>>>:

ð11Þ

where pmðx, yÞ stands for the PM value at pixel ðx, yÞ.

(a) Raw image (b) m = 2

(c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6

Figure 5: Illustration of PatchShuffle on a grayscale COVID-19 image.
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In the second step, create a random variable r that takes
the discrete probability distribution (DPD) as

(a) Raw image (b) m = 2

(c) m = 3 (d) m = 4

(e) m = 5 (f) m = 6

Figure 6: Illustration of PatchShuffle on a colorful house image.

Pr r = 1, 1ð Þ½ � = pm 1, 1ð Þ  Pr r = 1, 2ð Þ½ � = pm 1, 2ð Þ ⋯  Pr r = 1,Qð Þ½ � = pm 1,Qð Þ,
Pr r = 2, 1ð Þ½ � = pm 2, 1ð Þ  Pr r = 2, 2ð Þ½ � = pm 2, 2ð Þ ⋯  Pr r = 2,Qð Þ½ � = pm 2,Qð Þ,

⋯ ⋯ ⋯ ⋯

Pr r = P, 1ð Þ½ � = pm P, 1ð Þ  Pr r = P, 2ð Þ½ � = pm P, 2ð Þ ⋯  Pr r = P,Qð Þ½ � = pm P,Qð Þ,

8>>>>><
>>>>>:

ð12Þ
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where Pr represents the probability.
In the third step, a sample r0 is drawn from the random

variable r, and the corresponding position posðr0Þ = ðxr0 ,
yr0Þ. Then, the output of SP is at location posðr0Þ, namely,

BSP
mn = b xr0 , yr0

� �
: ð13Þ

Figure 3 presents the comparison of four different pool-
ing techniques. The top left shows the raw FM in which the
pooling will take place at a 3 × 3 kernel. If we take the top-
right block (in an orange rectangle) as an example, the L2P
outputs 4.96, while AP and MP output 4.08 and 9.3, respec-
tively. For the SP method, it will first generate the PM and
then sample a position based on the PM (see the red fonts),
and thus, SP outputs the value of 6.

A new “n-conv stochastic pooling module” (NCSPM) is
proposed in this study based on the SP layer discussed in pre-
vious paragraphs. The NCSPM entails n-repetitions of a conv
layer and a batch normalization layer, followed by an SP
layer. Figure 4 shows the schematic of the proposed NCSPM
module. In this study, n = 1∨2, since we experimented using
n = 3, but the performance using n = 3 did not improve.

3.3. Improvement II: Stochastic Pooling Neural Network. The
second improvement of this study is to propose a stochastic
pooling neural network (SPNN), whose structure was
inspired by VGG-16 [25]. In VGG-16, the network used
small kernels instead of large kernels and always used 2 × 2
filters with a stride of 2 for pooling. In the end, VGG-16
has two fully connected layers (FCLs).

This proposed SPNN will follow the same structure
design of VGG-16 but using the NCSPM module to replace
the convolution block in VGG-16. The details of SPNN are
shown in Table 3, where NWL means the number of
weighted layers, HS is the hyperparameter size, and FMS is
the feature map size.

Compared to ordinary CNN, the advantages of SPNN are
two folds: (i) SPNN helps prevent overfitting; (ii) SPNN is
parameter-free. (iii) SPNN can be easily combined with other
advanced techniques, such as batch normalization and
dropout. In total, we create this 11-layer SPNN. We have
attempted to insert more NCSPMs or more FCLs, which does
not show performance improvement but more computation
burden. The structure of the proposed model is summarized
in Table 3. The ½c1 × c1, c2� × c3 related to NCSPM stands for
c3 repetitions of c2 filters with size of c1 × c1. For the FCL, the
c1 × c2, c3 × c4 stands for a weight matrix is with size of c1 × c2
and a bias matrix is with size of c3 × c4. In the last column of
Table 3, the format of c1 × c2 × c3 represents the feature map’s
size in three dimensions: height, width, and channel. Directly
using transfer learning is another alternative.

In this study, we chose to create a custom neural network
by designing its structure and training the whole network
using our own data. The reason is some reports have shown
this “built your own network from scratch” can achieve
better performance than transfer learning [26, 27].

3.4. Improvement III: PatchShuffle SPNN. Kang et al. [28]
presented a new PatchShuffle method. In each minibatch,
images and feature maps undergo a transformation such that
pixels with that patch are shuffled. By generating fake
images/feature maps with interior order-less patches, Patch-
Shuffle creates local variations and reduces the possibility of
the AI model overfitting. Therefore, PatchShuffle is a benefi-
cial supplement to various existing training regularization
methods [28].

Assume there is a matrix X of M ×M entries. A random
variable v controls whether the matrix X to be Patch-
Shuffled or not. The random variable v obeys the Bernoulli
distribution

v ~ Bernoulli εð Þ: ð14Þ

Namely, v = 1 with probability ε, and v = 0 with prob-
ability 1 − ε. The resulted matrix X̂ is written as

X̂ = 1 − vð ÞX + vFPS Xð Þ, ð15Þ

where FPS is the PatchShuffle operation. Suppose the size
of each patch is m ×m, we can express the matrix X as

X =

x11 x12 ⋯ x1,M/m

x21 x22 ⋯ x2,M/m

⋮ ⋮ ⋱ ⋮

xM/m,1 xM/m,2 ⋯ xM/m,M/m

2
666664

3
777775, ð16Þ

where xij stands for a nonoverlapping patch at i-th row
and j-th column. The PatchShuffle transformation works
on every patch.

FPS Xð Þ = FPS xij
� �

, i = 1,⋯,
M
m

, j = 1,⋯,
M
m

	 

: ð17Þ

Input

NCSPM-1

NCSPM-5

...

Flatten

FCL-1

FCL-2

Softmax

PatchShuffle
FPS

SPNN PSSPNN

Random
variable

𝜈~Bernoulli(𝜀)

Figure 7: Build PSSPNN from SPNN.
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The shuffled patch is formulated as

FPS xij
� �

= eij × xij × eij′ , ð18Þ

where eij is the row permutation matrix and eij′ is the col-
umn permutation matrix [29]. In practice, a randomly
shuffle operation is used to replace the row and column
permutation operation. Each patch will undergo one of
the m2! possible permutations.

We proposed integrating PatchShuffle into our SPNN,
and this new network model is named as PatchShuffle sto-
chastic pooling neural network (PSSPNN). The PatchShuffle
operation acts on both the input image layer (see grayscale
image Figure 5 and colorful image Figure 6 with different
values of m) and the feature maps of all the convolutional
layers (9 conv layers from NCSPM-1 to NCSPM-5).

The schematics of building PSSPNN from the SPNN are
drawn in Figure 7, where either inputs or feature maps are
randomly selected to undergo the PatchShuffle operation.
To reach the best bias-variance trade-off, only a small per-

centage (ε) of the images/feature maps will undergo FPS

operation.
For simplicity, we consider the PatchShuffling images as

an example, and the training loss function ℓ of the proposed
PSSPNN is written as

ℓPSSPNN X, y,Wð Þ = 1 − vð Þℓ X, y,Wð Þ + vℓ FPS Xð Þ, y,W� �
,

ð19Þ

where ℓ stands for the ordinary loss function and ℓPSSPNN the
loss function of PSSPNN. X represents the original images
and FPSðXÞ the PatchShuffled images. The label is symbol-
ized as y, and the weights are symbolized as W .

Considering the extreme situations when v = 0∨1, we
have

ℓPSSPNN X, y,Wð Þ =
ℓ X, y,Wð Þ v = 0,

ℓ FPS Xð Þ, y,W� �
v = 1,

(
ð20Þ

which means the loss function degrades to ordinary loss
function when v = 0, and meanwhile, the loss function equals

1,2,…,W

1,2,…,WSalt-and-
pepper noise

Horizontal
shear

Vertical
shear

Image
rotation

Scaling

Random
translation

Gamma
correction

1,2,…,W

1,2,…,W 1,2,…,W

1,2,…,W

...

...

Gaussian
noise

... ...

Mirror

Figure 8: The proposed 16-way improved data augmentation method.

Table 4: Pseudocode of proposed 16-way improved data augmentation.

Input Raw image v ið Þ
Step 1 Eight geometric or photometric DA transforms were utilized on raw image v ið Þ.
Step 2 A horizontal mirror image is generated.

Step 3
The raw image v ið Þ, the mirrored image, the above 8-way DA results of the raw image, and the 8-way DA results

of the horizontal mirrored image are combined to form a dataset D ið Þ.
Output Enhanced dataset of raw image D ið Þ

9Computational and Mathematical Methods in Medicine



(a) Gaussian noise

(b) Salt-and-pepper noise

(c) Horizontal shear

(d) Vertical shear

(e) Rotation

(f) Gamma correction

(g) Random translation

Figure 9: Continued.
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to training all images PatchShuffled when v = 1. Taking
mathematical expectation of v, equation (19) turns to

1
1 − ε

Evℓ
PSSPNN X, y,Wð Þ = ℓ X, y,Wð Þ + ε

1 − ε
ℓ FPS Xð Þ, y,W� �

,

ð21Þ

where ε/1 − εℓ½FPSðXÞ, y,W � acts as a regularization term.

3.5. Improvement IV: Improved Multiple-Way Data
Augmentation. This small four-category dataset makes our
AI model prone to overfitting. In order to alleviate the over-
fitting and handle the low sample-size problem, the multiple-
way data augmentation (MDA) [30] method was chosen and
further improved. In the original 14-way MDA [30], the
authors used seven different data augmentation (DA) tech-
niques to the raw image and its horizontal image. Their seven
DA techniques are as follows: noise injection, horizontal
shear, vertical shear, rotation, Gamma correction, scaling,
and translation.

Figure 8 shows a 16-way data augmentation method. The
difference between the proposed 16-way DA with the tradi-
tional 14-way DA is that we add the salt-and-pepper noise
(SAPN). Although the SAPN defies intuition as it never takes
place in realistic CCT images, we found that it can increase
performance. The same observation was reported by Li
et al. [31], where the authors used salt and pepper noise for
the identification of early esophageal cancer. Table 4 shows
the pseudocode of this proposed 16-way improved data aug-
mentation.

v ið Þ↦D ið Þ = S

v ið Þ M v ið Þ½ �
S

k=1,::,8
f DAk v ið Þ½ �|fflfflfflfflffl{zfflfflfflfflffl}

W

S
k=1,::,8

f DAk M v ið Þ½ �f g|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
W

8>><
>>:

9>>=
>>;,

ð22Þ

(h) Scaling

Figure 9: Proposed 16-way data augmentation results.

Table 5: Dataset splitting.

Nontest (10-fold cross-validation) Test (10 runs) Total

COVID-19 Vntest
1

�� �� = 227 V test
1

�� �� = 57 V1j j = 284

CAP Vntest
2

�� �� = 225 V test
2

�� �� = 56 V2j j = 281

SPT Vntest
3

�� �� = 234 V test
3

�� �� = 59 V3j j = 293

HC Vntest
4

�� �� = 245 V test
4

�� �� = 61 V4j j = 306

Table 6: Comparison of SPNN with four standard CNNs.

Model Class Sen Prc F1

SC-CNN

C1 93.51 93.35 93.43

C2 86.79 91.87 89.26

C3 94.41 91.01 92.68

C4 94.59 93.37 93.97

MA 92.40

AP-CNN

C1 92.86 93.02 92.94

C2 95.76 92.93 94.32

C3 94.26 93.95 94.11

C4 93.22 93.22 93.22

MA 93.18

SPNN (ours)

C1 98.07 94.59 96.30

C2 91.79 95.19 93.45

C3 94.92 94.92 94.92

C4 95.25 95.40 95.32

MA 95.02

L2P-CNN

C1 88.77 93.36 91.01

C2 93.21 93.72 93.46

C3 94.41 92.68 93.53

C4 93.61 90.63 92.10

MA 92.53

MP-CNN

C1 95.44 94.77 95.10

C2 94.64 91.70 93.15

C3 94.07 93.43 93.75

C4 91.64 95.72 93.63

MA 93.91
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where W = 30 in this study. We tested a greater value of W,
but it does not bring about significant improvement. Hence,
one image vðiÞ will generate jDðiÞj = 16W + 2 = 482 images
(including original image), as shown in Figure 8.

Step 1. Eight geometric or photometric DA transforms
were utilized on raw image vðiÞ, as shown in Figure 8.
We use f DAk , k = 1,⋯, 8 to denote each DA operation.
Note each DA operation f DAk will yield W new images.
So, for a given image vðiÞ, we will produce an enhanced
dataset S

k=1,::,8
f DAk ½vðiÞ�, where S stands for concatenation

function.

Step 2. Horizontal mirror image is generated as M ½vðiÞ�,
where M means horizontal mirror function.

Step 3. The raw image vðiÞ, the mirrored image M ½vðiÞ�, all
the above 8-way DA results of raw image S

k=1,::,8
f DAk ½vðiÞ�,

and 8-way DA results of horizontal mirrored image S
k=1,::,8

f DAk fM½vðiÞ�g are combined. Mathematically, one training
image vðiÞ will generate to a dataset DðiÞ, which contains
16W + 1 new images.

Taking Figure 2(a) as an example raw image, Figure 9
shows the 8-way DA results, i.e., f DAk ½vðiÞ�, k = 1,⋯, 8. Due
to the page limit, the mirror image and its corresponding
8-way DA results are not shown here.

3.6. Implementation, Measure, and Explainability. Table 5
itemizes the nontest and test sets for each category. The
whole dataset V contains four nonoverlapping categories
V = fV1, V2, V3, V4g. For each category, the dataset will
be split into nontest set and test set Vk → fVntest

k ,V test
k g,

k = 1, 2, 3, 4.

V =

V1

V2

V3

V4

2
666664

3
777775 = Vntest V test½ � =

Vntest
1 V test

1

Vntest
2 V test

2

Vntest
3 V test

3

Vntest
4 V test

4

2
666664

3
777775: ð23Þ

Our experiment entails two phases. At phase I, 10-fold
cross-validation was used for validation on the nontest set to
select the best hyperparameters and best network structure.
The 16-way DA was used on the training set of 10-fold
cross-validation. The hyperparameter of the proposed
PSSPNN was determined over the nontest set Vntest. After-
ward at phase II, we train our model using the nontest set
Vntest 10 times with different initial seeds and attain the test
results over the test set V test. After combining the Rtest runs,
we attain a summation of the test confusion matrix (TCM)
Dtest. Table 5 shows the dataset splitting, where jxj stands
for the number of elements in the dataset x.

The ideal TCM is a diagonal matrix with the form of

Dtest
ideal = Rtest ×

V test
1

�� �� 0 0 0

0 V test
2

�� �� 0 0

0 0 V test
3

�� �� 0

0 0 0 V test
4

�� ��

2
6666664

3
7777775,

ð24Þ

in which all the off-diagonal elements are zero, meaning no
prediction errors. In realistic scenarios, the AI model will
make errors, and the performance is calculated per category.
For each class z = 1,⋯, 4, we set the label of that class as pos-
itive, and the labels of all the rest classes as negative. Three

SC-CNN

1-S 1-P 2-P1-F1 2-F12-S 3-P 3-F13-S 4-P 4-F1 MA F14-S

L2P-CNN
AP-CNN

MP-CNN
SPNN(Ours)

80
Pe

rf 
(%

)
85

90

95

100

C CNN
CNN

NN
N

Figure 10: 3D bar plot of SPNN against other network models.

Table 7: Hyperparameter optimization of PSSPNN in terms of
microaveraged F1 score.

ε
Patch size

1 × 2 2 × 2 2 × 4 3 × 3
0.01 95.19 95.54 95.15 94.98

0.05 95.49 95.79 95.45 95.11

0.10 95.24 95.28 95.54 95.41

0.15 95.24 95.11 95.28 95.06

0.20 95.06 95.15 94.85 94.72
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performance metrics (sensitivity, precision, and F1 score) per
category are defined below:

Sen zð Þ = TP zð Þ
TP zð Þ + FN zð Þ ,

Prc zð Þ = TP zð Þ
TP zð Þ + FP zð Þ ,

F1 zð Þ = 2 ∗ Prc zð Þ ∗ Sen zð Þ
Prc zð Þ + Sen zð Þ :

8>>>>>>>><
>>>>>>>>:

ð25Þ

The performance can be measured over all four catego-
ries. The microaveraged (MA) F1 (symbolized as F1μ) is used
since our dataset is slightly unbalanced:

F1μ =
2 ∗ Pr cμ ∗ Senμ
Pr cμ + Senμ

, ð26Þ

where

Senμ =
∑4

z=1TP zð Þ
∑4

z=1TP zð Þ + FN zð Þ
,

Pr cμ =
∑4

z=1TP zð Þ
∑4

z=1TP zð Þ + FP zð Þ
:

8>>>><
>>>>:

ð27Þ

Finally, gradient-weighted class activation mapping
(Grad-CAM) [32] was employed to provide explanations
on how our model makes the decision. It exploits the gradient
of the categorization score regarding the convolutional fea-
tures decided by the deep model to visualize the regions of
the image that are the most vital for the image classification
task [33]. The output of NCSPM-5 in Table 3 was used for
Grad-CAM.

4. Experiments, Results, and Discussions

The experiment was carried out on the programming plat-
form of Matlab 2020b. The programs ran on Windows 10
with 16GB RAM and 2.20GHz Intel Core i7-8750H CPU.
The performances are reported over the test set with 10 runs.

4.1. Comparison of SPNN and Other Pooling Methods. In the
first experiment, we compared the proposed SPNN with four
standard CNNs with different pooling methods. The first
CNN uses strided convolution in five modules to replace
the stochastic pooling. The second to fourth comparison
CNN models use L2P, AP, and MP, respectively. Those four
baseline methods are called SC-CNN, L2P-CNN, AP-CNN,
and MP-CNN, respectively. The results of 10 runs over the
test set are shown in Table 6. The bar plot is displayed in
Figure 10, where “k-S,” “k-P,” and “”k-F1” stand for the sen-
sitivity, precision, and F1 score for category k ∈ f1, 2, 3, 4g.

The results in Table 6 and Figure 10 are coherent with
our expectation that SPNN obtained the best results among
all FM reduction approaches. The SPNN arrives at the
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Figure 11: 3D bar chart of microaveraged F1 against patch size and probability.

Table 8: Comparison of SPNN against PSSPNN.

Model Class Sen Prc F1

SPNN (ours)

C1 98.07 94.59 96.30

C2 91.79 95.19 93.45

C3 94.92 94.92 94.92

C4 95.25 95.40 95.32

MA 95.02

PSSPN (ours)

C1 97.89 95.06 96.46

C2 92.86 96.30 94.55

C3 95.76 95.44 95.60

C4 96.56 96.40 96.48

MA 95.79
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sensitivities of all four categories are 98.07%, 91.79%, 94.92%,
and 95.25%, respectively. The precisions of all four categories
are 94.59%, 95.19%, 94.92%, and 95.40%, respectively. The
F1-scores of the four categories are 96.30%, 93.45%,
94.92%, and 95.32%, respectively. The overall microaveraged
F1 is 95.02%.

In terms of microaveraged F1, the second-best algorithm
is MP-CNN, which obtains a microaveraged F1 score of
93.91%. The third best is AP-CNN, with a microaveraged
F1 score of 93.18%. The two comparably worst algorithms
are SC-CNN and L2P-CNN, with the microaveraged F1
scores of 92.40% and 92.53%, respectively.

SPNN obtains the best results because SP can prevent
overfitting [17], which is the main shortcoming of max
pooling. On the other hand, AP and L2P will average out
the maximum activation values, which will impair the perfor-
mances of convolutional neural network models. For SC-
CNN, it only uses one quarter information of the input FM,
and therefore may neglect those greatest values [34]. In all,
this proposed SPNN can be regarded as an improved version
of vanilla CNN models, where the SP is used to replace tradi-
tional MP.

4.2. PSSPNN versus SPNN. In this second experiment, we
compared our two proposed network models, PSSPNN
against SPNN, to validate the effectiveness of PatchShuffle.
The results of 10 runs over the test set with different combi-
nations of hyperparameters are shown in Table 7, and the 3D
bar chart is shown in Figure 11. The optimal hyperparameter
we found from the 10-fold cross-validation of the nontest set
is ε = 0:05 and patch size is 2 × 2, which are coherent with
reference [28].

In addition, the PSSPNN with optimal hyperparameter is
compared with SPNN. The results are shown in Table 8.
From the table, we can observe that PSSPNN provides better
F1 values for all four categories and the overall microaverage,
which shows the effectiveness of PatchShuffle. The reason is
PatchShuffle adds regularization terms [28] in the loss func-
tion, and thus can improve the generalization ability of our
SPNN model.

4.3. Comparison to State-of-the-Art Approaches. We com-
pared our proposed PSSPNN method with 9 state-of-the-
art methods: RCBO [7], 6L-CNN [8], RN-50 [9], RN-18
[10], CSSNet [11], COVNet [12], DeCovNet [13], 7L-CNN-
CD [14], and FCONet [15]. All the comparison was carried
on the same test set of 10 runs. The comparison results are
shown in Table 9.

Table 9: Comparison with state-of-the-art approaches.

Model Class Sen Prc F1

RCBO [7]

C1 71.93 84.19 77.58

C2 72.86 72.73 72.79

C3 73.56 76.41 74.96

C4 80.66 68.91 74.32

MA 74.85

RN-50 [9]

C1 87.72 85.03 86.36

C2 87.68 91.26 89.44

C3 93.39 89.89 91.60

C4 84.92 87.65 86.26

MA 88.41

CSSNet [11]

C1 94.04 92.25 93.14

C2 93.75 95.11 94.42

C3 91.36 93.58 92.45

C4 94.43 92.75 93.58

MA 93.39

DeCovNet [13]

C1 91.05 90.58 90.81

C2 93.75 90.99 92.35

C3 90.51 86.97 88.70

C4 88.69 95.58 92.01

MA 90.94

FCONet [15]

C1 92.28 95.64 93.93

C2 96.79 94.43 95.59

C3 94.75 95.88 95.31

C4 94.92 92.94 93.92

MA 94.68

6L-CNN [8]

C1 72.46 83.94 77.78

C2 78.93 77.82 78.37

C3 81.86 75.00 78.28

C4 89.84 87.54 88.67

MA 80.94

RN-18 [10]

C1 82.81 82.66 82.73

C2 81.07 74.43 77.61

C3 74.24 76.98 75.58

C4 82.13 86.38 84.20

MA 80.04

COVNet [12]

C1 89.82 86.63 88.20

C2 89.82 92.63 91.21

C3 93.73 90.66 92.17

C4 87.38 90.96 89.13

MA 90.17

7L-CCD [14]

C1 89.47 93.58 91.48

C2 93.93 92.44 93.18

C3 93.73 95.18 94.45

C4 95.08 91.34 93.17

MA 93.09

Table 9: Continued.

Model Class Sen Prc F1

PSSPNN (ours)

C1 97.89 95.06 96.46

C2 92.86 96.30 94.55

C3 95.76 95.44 95.60

C4 96.56 96.40 96.48

MA 95.79
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For ease of comparison, Figure 12 only compares the
microaveraged F1 (MA F1) score of all algorithms, from
which we can observe this proposed PSSPNN achieves the
best performance among all the algorithms. This experiment
is a simulation-based comparison. In the future, we will apply
our algorithm to rigorous clinical testing and verification.

4.4. Explainability of Proposed PSSPNN. We take Figure 2
images as examples; the heatmaps of those four images are
shown in Figures 13(a)–13(d), and the manual delineation,
shown in Figures 13(e)–13(h), delineates the lesions of
the three disease samples. Note there are no lesions of
healthy control (HC) image. The NCSPM-5 feature map
in PSSPNN was used to generate heatmaps with the
Grad-CAM approach.

We can observe from Figure 13 that the heatmaps via our
PSSPNN model and Grad-CAM can capture the lesions

effectively and meanwhile neglect those nonlesion regions.
Traditionally, AI is regarded as a “black box,” which impairs
its widespread usage, e.g., the black box properties of tradi-
tional AI are problematic for the FDA. Nevertheless, with
the help of explainability of modern AI techniques [35], the
radiologist and patients will gain confidence in our proposed
AI model, as the heatmap provides a clear and understand-
able interpretation of how AI predicts COVID-19 and other
chest infectious disease from healthy subjects, which was also
stated in reference [36]. Many new AI-based anatomic path-
ological systems now pass through FDA approval, such as
whole slide images (WSI) [37], since the doctors know the
relationships between the diagnosis and the explained
answer.

In the future, the explainability of our proposed AI
model can be used in patient monitoring [38] and health
big data [39]. Some novel network improvement and signal
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(a) Heatmap of COVID-19 (b) Heatmap of CAP (c) Heatmap of SPT (d) Heatmap of HC

(e) Lesion of COVID-19 (f) Lesion of CAP (g) Lesion of SPT (h) No lesion for HC

Figure 13: Delineation of three diseased samples.
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processing techniques may help our AI model in future
researches, such as filters [40, 41], fuzzy [42, 43], edge comput-
ing [44], knowledge-aid [45, 46], autofocus [47], graph inte-
gration, and cross-domain knowledge exploitation [48–50].

5. Conclusion

In this paper, we proposed a PSSPNN, which entails five
improvements: (i) proposed NCSPM module, (ii) usage of
stochastic pooling, (iii) usage of PatchShuffle, (iv) improved
multiple-way data augmentation, and (v) explainability via
Grad-CAM. Those five improvements enable our AI model
to deliver improved performances compared to 9 state-of-
the-art approaches. The 10 runs on the test set showed our
algorithm achieved a microaveraged F1 score of 95.79%.

There are three shortcomings of our method, which will
be resolved in the future: (i) the dataset currently contains
three chest infectious diseases. In the future, we shall try to
include more classes of chest diseases, such as thoracic can-
cer. (ii) Some new network techniques and models are not
tested, such as transfer learning, wide network module
design, attention mechanism, and graph neural network.
Those advanced AI technologies will be studied. (iii) Our
model does not go through strict clinical validation, so we
will attempt to release our software to hospitals and get feed-
back from radiologists and consultants.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Shui-Hua Wang and Yin Zhang contributed equally to this
paper.

Acknowledgments

We appreciate Qinghua Zhou for helping us revise our
English. This paper is partially supported by the Royal
Society International Exchanges Cost Share Award, UK
(RP202G0230); Medical Research Council Confidence in
Concept Award, UK (MC_PC_17171); Hope Foundation
for Cancer Research, UK (RM60G0680); British Heart
Foundation Accelerator Award, UK; Open fund for Jiangsu
Key Laboratory of Advanced Manufacturing Technology
(HGAMTL-1703); Guangxi Key Laboratory of Trusted
Software (kx201901).

References

[1] A. A. Szigiato, M. Anderson, M. Mabon, M. Germain, G. M.
Durr, and A. C. Labbe, “Usefulness of prestorage corneal swab
culture in the prevention of contaminated corneal tissue in

corneal transplantation,” Cornea, vol. 39, no. 7, pp. 827–833,
2020.

[2] R. Mögling, A. Meijer, N. Berginc et al., “Delayed laboratory
response to covid-19 caused by molecular diagnostic contam-
ination,” Emerging Infectious Diseases, vol. 26, no. 8, pp. 1944–
1946, 2020.

[3] T. Ai, Z. Yang, H. Hou et al., “Correlation of chest CT and RT-
PCR testing for coronavirus disease 2019 (COVID-19) in
China: a report of 1014 cases,” Radiology, vol. 296, no. 2,
pp. E32–E40, 2020.

[4] R. Jain, M. Gupta, S. Taneja, and D. J. Hemanth, “Deep learning
based detection and analysis of COVID-19 on chest X-ray
images,” Applied Intelligence, vol. 51, no. 3, pp. 1690–1700, 2021.

[5] H. Conway, G. Lau, and V. Zochios, “Personalizing invasive
mechanical ventilation strategies in coronavirus disease 2019
(COVID-19)-associated lung injury: the utility of lung ultra-
sound,” Journal of Cardiothoracic and Vascular Anesthesia,
vol. 34, no. 10, pp. 2571–2574, 2020.

[6] A. K. Goel, D. DiLella, G. Dotsikas, M. Hilts, D. Kwan, and
L. Paxton, “Unlocking radiology reporting data: an implemen-
tation of synoptic radiology reporting in low-dose CT cancer
screening,” Journal of Digital Imaging, vol. 32, no. 6,
pp. 1044–1051, 2019.

[7] S. Wang, P. Li, P. Chen et al., “Pathological brain detection via
wavelet packet Tsallis entropy and real-coded biogeography-
based optimization,” Fundamenta Informaticae, vol. 151,
no. 1-4, pp. 275–291, 2017.

[8] X. Jiang and Y. D. Zhang, “Chinese sign language fingerspell-
ing via six-layer convolutional neural network with leaky
rectified linear units for therapy and rehabilitation,” Journal
of Medical Imaging and Health Informatics, vol. 9, no. 9,
pp. 2031–2090, 2019.

[9] L. V. Fulton, D. Dolezel, J. Harrop, Y. Yan, and C. P. Fulton,
“Classification of Alzheimer’s disease with and without imag-
ery using gradient boosted machines and ResNet-50,” Brain
Sciences, vol. 9, no. 9, p. 212, 2019.

[10] M. H. Guo and Y. Z. Du, “Classification of thyroid ultrasound
standard plane images using ResNet-18 networks,” in 2019
IEEE 13th International Conference on Anti-counterfeiting,
Security, and Identification (ASID), pp. 324–328, Xiamen,
China, 2019.

[11] J. P. Cohen, L. Dao, K. Roth et al., “Predicting COVID-19
pneumonia severity on chest X-ray with deep learning,” Cur-
eus, vol. 12, article e9448, 2020.

[12] L. Li, L. Qin, Z. Xu et al., “Using artificial intelligence to detect
COVID-19 and community-acquired pneumonia based on
pulmonary CT: evaluation of the diagnostic accuracy,” Radiol-
ogy, vol. 296, no. 2, pp. E65–E71, 2020.

[13] X. G. Wang, X. B. Deng, Q. Fu et al., “A weakly-supervised
framework for COVID-19 classification and lesion localization
from chest CT,” IEEE Transactions on Medical Imaging,
vol. 39, no. 8, pp. 2615–2625, 2020.

[14] Y. D. Zhang, S. C. Satapathy, L. Y. Zhu, J. M. Gorriz, and S. H.
Wang, “A seven-layer convolutional neural network for chest
CT based COVID-19 diagnosis using stochastic pooling,”
IEEE Sensors Journal, 2020.

[15] H. Ko, H. Chung, W. S. Kang et al., “COVID-19 pneumonia
diagnosis using a simple 2D deep learning framework with a
single chest CT image: model development and validation,”
Journal of Medical Internet Research, vol. 22, article e19569,
p. 13, 2020.

16 Computational and Mathematical Methods in Medicine



[16] S.-H. Wang, D. R. Nayak, D. S. Guttery, X. Zhang, and Y. D.
Zhang, “COVID-19 classification by CCSHNet with deep
fusion using transfer learning and discriminant correlation
analysis,” Information Fusion, vol. 68, pp. 131–148, 2021.

[17] M. D. Zeiler and R. Fergus, “Stochastic pooling for regulariza-
tion of deep convolutional neural networks,” 2013, https://
arxiv.org/abs/1301.3557.

[18] Y.-D. Zhang, D. R. Nayak, X. Zhang, and S.-H. Wang, “Diag-
nosis of secondary pulmonary tuberculosis by an eight-layer
improved convolutional neural network with stochastic pool-
ing and hyperparameter optimization,” Journal of Ambient
Intelligence and Humanized Computing, 2020.

[19] X. W. Jiang, M. Lu, and S. H. Wang, “An eight-layer convolu-
tional neural network with stochastic pooling, batch normali-
zation and dropout for fingerspelling recognition of Chinese
sign language,” Multimedia Tools and Applications, vol. 79,
no. 21-22, pp. 15697–15715, 2020.

[20] A. Jahanbakhshi, M. Momeny, M. Mahmoudi, and Y. D.
Zhang, “Classification of sour lemons based on apparent
defects using stochastic pooling mechanism in deep convolu-
tional neural networks,” Scientia Horticulturae, vol. 263, article
109133, p. 10, 2020.

[21] B. C. Zhou, X. L. Wang, and Q. Q. Qi, “Optimal weights
decoding of M-ary suprathreshold stochastic resonance in
stochastic pooling network,” Chinese Journal of Physics,
vol. 56, no. 4, pp. 1718–1726, 2018.

[22] H. Vu, H. C. Kim, M. Jung, and J. H. Lee, “fMRI volume
classification using a 3D convolutional neural network robust
to shifted and scaled neuronal activations,” Neuroimage,
vol. 223, article 117328, 2020.

[23] J. Yang, Z. X. Ji, S. J. Niu, Q. Chen, S. T. Yuan, and W. Fan,
“RMPPNet: residual multiple pyramid pooling network for
subretinal fluid segmentation in SD-OCT images,” OSA Con-
tinuum, vol. 3, no. 7, pp. 1751–1769, 2020.

[24] B. Brzycki, A. P. Siemion, S. Croft et al., “Narrow-band signal
localization for SETI on noisy synthetic spectrogram data,”
Publications of the Astronomical Society of the Pacific,
vol. 132, article 114501, 2020.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in International
Conference on Learning Representations (ICLR), pp. 1–14,
San Diego, CA, USA, 2015.

[26] A. Hazra, P. Choudhary, S. Inunganbi, and M. Adhikari,
“Bangla-Meitei Mayek scripts handwritten character recogni-
tion using convolutional neural network,” Applied Intelligence,
2020.

[27] Y. H. Sabry, W. Z. W. Hasan, A. H. Sabry, M. Z. A. A. Kadir,
M. A. M. Radzi, and S. Shafie, “Measurement-based modeling
of a semitransparent CdTe thin-film PV module based on a
custom neural network,” IEEE Access, vol. 6, pp. 34934–
34947, 2018.

[28] G. Kang, X. Dong, L. Zheng, and Y. Yang, “Patchshuffle regu-
larization,” 2017, https://arxiv.org/abs/1707.07103.

[29] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6,
no. 1, p. 60, 2019.

[30] S.-H. Wang, V. V. Govindaraj, J. M. Górriz, X. Zhang, and
Y. D. Zhang, “Covid-19 classification by FGCNet with deep
feature fusion from graph convolutional network and convolu-
tional neural network,” Information Fusion, vol. 67, pp. 208–
229, 2021.

[31] X. Li, Y. Chai, W. Chen, and F. Ao, “Identification of early
esophageal cancer based on data augmentation,” in 2020 39th
Chinese Control Conference (CCC), pp. 6307–6312, Shenyang,
China, 2020.

[32] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-CAM: visual explanations from deep net-
works via gradient-based localization,” International Journal
of Computer Vision, vol. 128, no. 2, pp. 336–359, 2020.

[33] J. Kim and J. M. Kim, “Bearing fault diagnosis using Grad-
CAM and acoustic emission signals,” Applied Sciences,
vol. 10, no. 6, article 2050, 2020.

[34] T. Akilan and Q. M. J. Wu, “sEnDec: an improved image to
image CNN for foreground localization,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 10,
pp. 4435–4443, 2020.

[35] L. Guiga and A. W. Roscoe, “Neural network security: hiding
CNN parameters with guided Grad-CAM,” in Proceedings of
the 6th International Conference on Information Systems
Security and Privacy (ICISSP), pp. 611–618, Valletta, Malta,
2020.

[36] M. S. Hossain, G. Muhammad, and N. Guizani, “Explainable
AI and mass surveillance system-based healthcare framework
to combat COVID-I9 like pandemics,” IEEE Network,
vol. 34, no. 4, pp. 126–132, 2020.

[37] A. B. Tosun, F. Pullara, M. J. Becich, D. L. Taylor, J. L. Fine,
and S. C. Chennubhotla, “Explainable AI (xAI) for anatomic
pathology,” Advances in Anatomic Pathology, vol. 27, no. 4,
pp. 241–250, 2020.

[38] M. S. Hossain, “Cloud-supported cyber-physical localization
framework for patients monitoring,” IEEE Systems Journal,
vol. 11, no. 1, pp. 118–127, 2017.

[39] M. S. Hossain and G. Muhammad, “Emotion-aware connected
healthcare big data towards 5G,” IEEE Internet of Things Jour-
nal, vol. 5, no. 4, pp. 2399–2406, 2018.

[40] S. Liu, D. Y. Liu, G. Srivastava, D. Połap, and M. Woźniak,
“Overview and methods of correlation filter algorithms in
object tracking,” Complex & Intelligent Systems, vol. 23,
2020.

[41] S. Liu, W. L. Bai, G. Srivastava, and J. A. T. Machado, “Prop-
erty of self-similarity between baseband and modulated sig-
nals,” Mobile Networks and Applications, vol. 25, no. 4,
pp. 1537–1547, 2020.

[42] S. Liu, X. Y. Liu, S. Wang, and K. Muhammad, “Fuzzy-aided
solution for out-of-view challenge in visual tracking under
IoT-assisted complex environment,” Neural Computing &
Applications, vol. 33, no. 4, pp. 1055–1065, 2021.

[43] S. Liu, S. Wang, X. Liu, C. Lin, and Z. Lv, “Fuzzy detection
aided real-time and robust visual tracking under complex
environments,” IEEE Transactions on Fuzzy Systems, vol. 29,
no. 1, 2020.

[44] S. Liu, C. L. Guo, F. al-Turjman, K. Muhammad, and V. H. C.
de Albuquerque, “Reliability of response region: a novel mech-
anism in visual tracking by edge computing for IIoT environ-
ments,” Mechanical Systems and Signal Processing, vol. 138,
article 106537, 2020.

[45] X. Mao, L. Ding, Y. Zhang, R. Zhan, and S. Li, “Knowledge-
aided 2-D autofocus for spotlight SAR filtered backprojection
imagery,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 57, no. 11, pp. 9041–9058, 2019.

[46] X. H. Mao, X. L. He, and D. Q. Li, “Knowledge-aided 2-D
autofocus for spotlight SAR range migration algorithm

17Computational and Mathematical Methods in Medicine

https://arxiv.org/abs/1301.3557
https://arxiv.org/abs/1301.3557
https://arxiv.org/abs/1707.07103


imagery,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 56, no. 9, pp. 5458–5470, 2018.

[47] X. H. Mao and D. Y. Zhu, “Two-dimensional autofocus for
spotlight SAR polar format imagery,” IEEE Transactions on
Computational Imaging, vol. 2, pp. 524–539, 2016.

[48] K. Xia, Y. Zhang, Y. Jiang et al., “TSK fuzzy system for multi-
view data discovery underlying label relaxation and cross-
rule & cross-view sparsity regularizations,” IEEE Transactions
on Industrial Informatics, pp. 1–1, 2020.

[49] K. Xia, X. Gu, and B. Chen, “Cross-dataset transfer driver
expression recognition via global discriminative and local
structure knowledge exploitation in shared projection sub-
space,” IEEE Transactions on Intelligent Transportation Sys-
tems, pp. 1–12, 2020.

[50] K. Xia, T. Ni, H. Yin, and B. Chen, “Cross-domain classifica-
tion model with knowledge utilization maximization for rec-
ognition of epileptic EEG signals,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 18,
pp. 53–61, 2020.

18 Computational and Mathematical Methods in Medicine


	PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation
	1. Introduction
	2. Dataset
	3. Methodology
	3.1. Preprocessing
	3.2. Improvement I: n-conv Stochastic Pooling Module
	3.3. Improvement II: Stochastic Pooling Neural Network
	3.4. Improvement III: PatchShuffle SPNN
	3.5. Improvement IV: Improved Multiple-Way Data Augmentation
	3.6. Implementation, Measure, and Explainability

	4. Experiments, Results, and Discussions
	4.1. Comparison of SPNN and Other Pooling Methods
	4.2. PSSPNN versus SPNN
	4.3. Comparison to State-of-the-Art Approaches
	4.4. Explainability of Proposed PSSPNN

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

