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Abstract
Blockchain and cryptocurrency are a hot topic in today’s digital world. In this paper, we create a game theoretic model in

continuous time. We consider a dynamic game model of the bitcoin market, where miners or players use mining systems to

mine bitcoin by investing electricity into the mining system. Although this work is motivated by BTC, the work presented

can be applicable to other mining systems similar to BTC. We propose three concepts of dynamic game theoretic solutions

to the model: Social optimum, Nash equilibrium and myopic Nash equilibrium. Using the model that a player represents a

single ‘‘miner’’ or a ‘‘mining pool’’, we develop novel and interesting results for the cryptocurrency world.

Keywords Blockchain � Bitcoin mining � Dynamic game theory � Differential game � Hamilton–Jacobi–Bellman equation �
Social optimum � Nash equilibrium � Myopic Nash equilibrium � Pigovian tax

1 Introduction

A bitcoin is created by miners, using complex mathemat-

ical ‘‘proof of work’’ procedures by computing hashes [8].

For each successful attempt, miners get rewards in terms of

bitcoin and transaction fees. Miners participate in mining

voluntarily in exchange for rewards as income. Electricity

plays an essential role in the bitcoin mining process since

created blocks and solving computationally hard problems

uses large amounts of electricity. We can consider elec-

tricity as a semi-renewable resource—depending on the

source of resources used for its production. The electricity

consumed by the mining systems is directly proportional to

the computational power of the system being used. The fact

is that at each new block creation only one miner will be

rewarded (the one who will win the mining game by first

creating and updating the blockchain). The remaining

miners’ effort, as well as electricity used for mining at that

time, will be wasted. Therefore, optimizing the consump-

tion of electricity is one of the essential and most chal-

lenging problems effecting bitcoin mining.

Bitcoin [19] was introduced in 2009. Its security is

based on a concept known as Proof of Work (POA), and

a transaction is only considered valid once the system

obtains proof that a sufficient amount of computational

work has been exerted by an actively mining node. The

miners (responsible for creating blocks) constantly try to

solve cryptographic puzzles in the form of hash computa-

tions. The process of adding a new block to the blockchain

is called mining and these blocks contain a set of transac-

tions that have been authenticated (confirmed). The aver-

age time to create a new block in the blockchain is 10

minutes. Two types of agents participate in the Bitcoin

network: miners, who validate transactions and clients,

who trade in BTC [4]. The blockchain is a shared data

structure responsible for storing all transactional history to
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date. The blocks are connected with each other in the form

of a chain. The first block of the chain is known as Genesis.

Each block consists of a Block Header, Transaction

Counter and Transaction. The structure of blockchain is

given in Table 1.

Each block in the chain is identified by a hash in the

header. The hash is unique and generated by the Secure

Hash Algorithm (SHA-256). SHA takes any size plain-

text and calculates a fixed size 256-bit cryptographic hash.

Each header contains the address of the previous block in the

chain. The process of adding blocks in the blockchain is

called ‘‘mining of blocks’’. If miners mine a valid block, it

publishes the block in the blockchain and extends the

blockchain by one new block. The creator of the block is

rewarded with BTC. In this work, we assume that miners are

honest and follow the protocol as described thus far.

Electricity, one of the necessities of today’s society, can

be considered as renewable if it is generated from renew-

able resources. For example, solar energy, hydro-power,

and windmill power are renewable versions of electricity.

There are also non-renewable types if it is produced from

thermal power plants that use coal—a non-renewable

resource. So, depending on if renewable non-renewable

resources, it is considered semi-renewable.

Exploitation of a shared resource is a significant prob-

lem [5]. Since electricity can be considered a semi-re-

newable resource, we have seen an unexpected growth of

electricity (or computational power) consumption resulting

from BTC mining [21, 22]. This has brought many miners

to despair because the reward of mining a bitcoin decreases

every 4 years by 50%. Therefore, miners need to mine

BTC strategically to make BTC mining a long lasting

activity that remains prosperous. However, there are still

transaction fees that can keep the BTC market prof-

itable for many years to come. In this paper, we use the

tools of dynamic game theory to solve a novel dynamic

game model. Our game model can be stated as follows: a

miner’s objective is to use more powerful (computation-

ally) mining systems that consume more electricity, in

order to maximize the net profit gain from producing or

mining BTC. They can then sell the gained BTC to the

prevailing market at the current market value.

We propose two ways to maximize the profit of miners:

cooperative—all miners cooperate and decide to consume

some fixed amount of electricity and in return, they get

BTC market price as profit so, they jointly maximize their

profit and the profit is equally shared among them—and

non-cooperative—each miner behaves selfishly and indi-

vidually wants to maximize the profit gained from BTC

mining.

Although this work is motivated by BTC, it is more

heavily influenced by the future of Blockchain. The work and

game theoretic model presented here can be applicable to

other mining systems that utilize a similar mining system to

BTC, therefore well versed in many different potential

Blockchain applications [3, 16, 30]. Furthermore, the work

presented here can be easily adapted to other mining schemes

in the future making this a pivotal model and work on game

theory and its relation to the mining process for Blockchain.

The rest of the paper is organized as follows. We survey

some of the closest related works next in Sect. 2. We fol-

low this with the formulation of our mode in Sect. 3. We

then give our main results in Sect. 4 with solutions to the

concepts presented in Section 3. We based our results with

some discussion on how to enforce social optimality in

Sect. 5. Finally, we conclude this paper with some remarks

in Sect. 6.

2 Related work

Since the early days of BTC, blockchain technology and

cryptocurrencies have caught the attention of both

researchers and investors alike. The original paper on BTC

was improved in [23], mostly focussing on security anal-

ysis. Showing an attack in which large pools can gain more

than their fair share, Eyal et al. showed that BTC mining

protocol is not incentive compatible [10], which was a

significant work.

The linear quadratic differential game is the best-re-

searched class of dynamic games (see Engwerda [9]).

Dynamic games with linear quadratic structure and with

linear state dependent constraints were studied by Singh

and Wiszniewska-Matyszkiel in [26, 27] but in the discrete

time horizon.

Zohar et al. [18] examined dynamics of pooled mining

and the rewards that pools manage to collect. They use

cooperative game theoretic tools to analyze how pool

members may share these rewards. They showed that for

some network parameters, especially under high transac-

tion loads, it is difficult or even impossible to distribute

rewards stably: some participants are always given incen-

tives to switch between pools. The work of Niyato et al.

[20] shows how to model blockchain technology as a

cooperative game, in which cloud providers can cooperate.

They show a novel solution of the core issues can be found

using linear programming.

Table 1 Structure of the blockchain [19]

Field Size

Block header 80 bytes

Block size 4 bytes

Transaction counter 1 to 9 bytes

Transaction Depends on the transaction size

2036 Cluster Computing (2020) 23:2035–2046

123



Kiayias considered the Blockchain Mining Game with

incomplete information as a stochastic dynamic game in

discrete time [15]. They considered two types of strategies.

First they considered when miners release every mined

block immediately and secondly when a block is mined and

announced immediately but not released. The latter causes

other miners to continue mining transactions that will soon

be committed. Miners are always strategic in choosing

which blocks to mine. As a result of their research, they

found that the best response of a miners with low com-

putational power matches the expected behaviour of BTC

designers while for the miner with sizeable computational

power, he/she deviates from the expected behaviour, and

other Nash equilibria arise.

Salimitari discussed the mining profitability of a new

miner or pool by calculating the expected value of profit

[24]. In their model, they assume the cost of mining was

linear to the price of electricity consumed in the mining

process. Hayes studied the model to check the marginal

cost of production and proposed to set the market value of

the digital BTC currency [13]. They show that the marginal

cost of production of BTC plays an essential role in

explaining BTC prices.

Houy considered the BTC mining game where they

studied the mining incentives as a decision regarding how

many transactions they should include in the block they are

mining in order to win the game and update the block first

[14]. Harvey et al. considered the model of miners’ prof-

itability from the mining cost analysis of the electrical

energy invested in bitcoin mining production [11]. They

also show that how the profit model changes as mining

scales from the individual to the industrial level.

Laszka et al. consider a game-theoretic model that

allows capturing short term as well as long-term impacts of

attacks against mining pools [17]. Using this model, they

studied the conditions under which the mining pools have

no incentives to cheat against each other and the conditions

under which one mining pool is marginalized by cheating.

Our model is not a one shot game model or static game

model. It is a dynamic game meaning that players make a

decision at each time instant that is based on amount of

resource—electricity available at that time instant. To the

best of author’s knowledge, such dynamic games have

never appeared before.

3 Formulation of the model

We consider a continuous time dynamic game model of

exploitation of a semi-renewable resource—electricity.

Since electricity is produced from renewable resource or

partly from renewable and partly from non-renewable

resource in constant proportion and for simplicity by

‘‘electricity’’, we mean the stock of this resource.

The game Ĝ consists of the following parts:

GP1. The set of players: I ¼ f1; 2; . . .; ng. Players can be

either individual miners or mining pools.

GP2. The state of resource x is the stock of resource used

for electric energy production which may be used

for mining—proportional to the amount of avail-

able computational power and to the maximal

available electricity consumption for mining. Since

there is nothing like negative amounts of compu-

tational power and it is not zero, we assume that

x 2 ð0;þ1Þ with the initial state Xð0Þ ¼ x0 repre-

senting the initial amount of resource (we use

notation X for trajectories, i.e., state as a function of

time, and x for state, so we can write XðtÞ ¼ x).

GP3. At each time instant t, miner i decides to consume si
amount of electricity, which we call strategy of

miner i. These si in common constitute a profile of

strategies and is defined as s ¼ ðs1; . . .; snÞ. Denote

a function by Si and defined as SiðXðtÞÞ ¼ si.

Therefore, at time instant t, seeing that X(t) amount

of power is available, miner i will use strategy

SiðXðtÞÞ.
GP4. The set of decisions of each miner is Ui ¼ Rþ,

representing intensity of electricity use. However,

there are state dependent constraints on decisions.

GP5. Given state x, the set of available decisions is

U iðxÞ ¼ ½0;Mx� (the closed interval), for some

constant M[ 1. So, for every miner i, mining

strategy si 2 ½0;Mx�. This represents a real situation

where a miner cannot consume more than the

intensity of electricity consumption available to

him/her, or a negative amount of electricity. We

denote the set of decision profiles by Un
i .

GP6. We consider the economic scenario where a BTC

miner i invests some amount of electricity to the

mining system in order to solve a ‘‘Proof of Work’’

problem. As a result of successfully mining a block

into the blockchain, he produces BTC. He/she sells

BTC into the common-market for a fixed market

price of BTC—in order to concentrate on problems

related to energy consumption, we skip the exoge-

nous randomness of BTC price. Mining, however,

may end up with a failure. Efficiency (measured in

expected value of the reward in dollars) in this

process of a unit of energy consumption by a miner

is a decreasing function of joint energy consump-

tion by all miners. (This efficiency plays a role

similar to price in economic models of oligopolies

defined by the so called inverse demand function).

We consider a simple approximation.
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EfficiencyðsÞ ¼ P�
Xn

j¼1

sj ð3:1Þ

for some positive constant P.

GP7. The cost of mining for miner i in dollars, is linearly

proportional to the price of electricity consumed i.e.

si.

CostðsiÞ ¼ C � si

for some positive C. We assume that the cost of

mining is identical for each miner.

GP8. So, in this economic model, the net profit of each

miner is given by the expected net revenue minus

the mining cost. So, the current or instantaneous

payoff or profit gi of miner i is given by

giðx; si; s� iÞ ¼EfficiencyðsÞ � si � CostðsiÞ

¼ P�
Xn

j¼1

sj

 !
si � Csi;

ð3:2Þ

where s� i is a way in which we denote the vector

of consumptions of the other miners. Whenever we

consider profiles in which decisions of the others

are identical, by a slight abuse of notation, we write

this single decision only, not the whole vector.

In economics generally, P is substantially higher

than C.

GP9. A function X : ð0;þ1Þ ! Rþ is called a trajectory

of the state of the system and given by

_XðtÞ ¼ w XðtÞ; SðXðtÞÞð Þ;
with the initial condition Xð0Þ ¼ x0;

ð3:3Þ

for the state transition function w, describing the

behaviour of the system dynamics:

wðx; sÞ ¼ nx�
Xn

j¼1

sj; ð3:4Þ

where 0\n\1 is called the regeneration rate of

electricity, which is semi-renewable.

GP10. We are interested in calculating the feedback

strategies Si : ð0;þ1Þ ! Rþ such that the con-

straint is fulfilled and Eq. (3.3) has a unique

solution. It means that the intensity of electricity

consumption that s/he decides to use at every time

instant t depends on X(t). The set of such strategies

is denoted by Si.

GP11. The payoffs of miners in the game are discounted

and the interest rate used for discounting is

r 2 ð0; 1Þ. This is typical for economic problems.

If we look at discrete time and yearly interest rate,

then for 1 dollar at the bank account we will get 1 þ r

after a year. So, the present value of a dollar which

we are going to obtain after a year is 1
1þr, while the

present value of a dollar which we are going to

obtain after t years is 1
ð1þrÞt. If the bank pays the

interest more and more often, then it uses a

continuous time limit of this process e�rt instead of
1

ð1þrÞt, and this works also for t that is an arbitrary real

number. We assume that n
2
� r� n\\ðP� CÞ.

GP12. The total payoff function or total profit of a miner

given the initial state x0, a strategy of player i Si and

strategies of the remaining players S� i is

Ji x0; ½Si; S� i�ð Þ

¼
Z1

t¼0

e�rtgiðXðtÞ; SiðXðtÞÞ; S� iðXðtÞÞÞdt;

ð3:5Þ

for i ¼ 1; 2; . . .n and for X given by Eq. (3.3). The

notation ½Si; S� i� is a convenient way of writing a

strategy profile S emphasizing the special role of

player i in it.

Analogously, we can define Ji �x; ½Si; S� i�ð Þ for

arbitrary initial �x� 0. If it does lead to confusion,

we will also use shorter form Ji �x; Sð Þ.

4 Solution for BTC mining model

Here we discuss the solution types for our BTC mining

game.

Social Optimum mining profile A social optimum

mining profile is defined as a solution to our mining game

where all miners cooperate. In other words, it is a profile

where all miners jointly maximize their current payoffs or

profits. A social optimum mining profile can be the result

of decision making by a single miner, known as a social

planner, or just full cooperation of all miners.

Definition 1 A mining profile �S is called a social optimum

mining profile in the n miner BTC mining game if and only

if �S maximizes
Pn

i¼1

Jiðx0; SÞ.

Nash equilibrium mining profile A Nash equilibrium

mining profile is defined as a solution of our mining game

where all miners behave selfishly and do not cooperate

with each other. A mining profile �S is a Nash equilibrium if

no miner can benefit from unilateral deviation from it.

Formally it can be defined as follows.

Definition 2 A mining profile �S is called a Nash equi-

librium if and only if for every miner i 2 I and for every

mining strategy Si of miner i,
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Ji x; ½Si; �S� i�ð Þ� Ji x; ½ �Si; �S� i�ð Þ for all x: ð4:1Þ

We will also use another solution concept—a myopic

Nash equilibrium—a profile of strategies in which each of

the players maximizes his/her current payoff. Such profiles

often appear in dynamic games with many players, in

which players treat their influence of the state variable as

negligible.

Definition 3 A mining profile �S is called a greedy or

myopic Nash equilibrium if and only if for every miner

i 2 I and for every x and every mining decision si 2 ½0;Mx�
of miner i,

gi x; si; �S� iðxÞð Þ� gi x; �SiðxÞ; �S� iðxÞð Þ for all x: ð4:2Þ

4.1 Calculation of social optimum

First, we calculate the social optimum strategy profile—

solution of the cooperative game and the value function—

the total profit of a cooperative miner.

Consider the total profit J x; Sð Þ ¼
Pn

i¼1

Ji x; ½Si; S� i�ð Þ,

then the dynamic optimization problem of finding a social

optimum mining profile is defined by

sup
S2Sn

J x0; Sð Þ; ð4:3aÞ

_XðtÞ ¼ nXðtÞ �
Xn

i¼1

SiðXðtÞÞ; ð4:3bÞ

Xð0Þ ¼ x0: ð4:3cÞ

Theorem 1 The optimal solution for cooperation of all

miners is given by

llS SO
i ðxÞ :¼

0 0� x\x̂0;

ð2n� rÞ2nxþ ðP�CÞðr� nÞ
2nn

x̂0 � x\x̂1;

P�C

2n
x� x̂1:

8
>>>><

>>>>:

ð4:4Þ

for the constant x̂0 ¼ ðP�CÞðr�nÞ
2nðr�2nÞ ; x̂1 ¼ P�C

2n .

We call this optimal solution ‘‘a social optimum

profile’’.

The combined total profit of all miners for this social

optimum mining profile is given by

V SO ðxÞ :¼

x

x̂0

� �r
n Hx̂0

2

2
þ Gx̂0 þ K

� �
0� x\x̂0;

Hx2

2
þ Gxþ K x̂0 � x\x̂1;

ðP� CÞ2

4r
x� x̂1:

8
>>>>>>><

>>>>>>>:

ð4:5Þ

for constants H ¼ 2ðr � 2nÞ; G ¼ �ðP�CÞðr�2nÞ
n and

K ¼ ðP�CÞ2ðr�nÞ2

4rn2 .

The total payoff or profit of an individual miner i is

given by

VSO
i ðxÞ :¼ VSOðxÞ

n
: ð4:6Þ

This optimal total payoff is called the ‘‘value function’’ of

miner i at the social optimum profile.

One of the methods to find the optimal control is by

solving the Bellman or Hamilton–Jacobi–Bellman (HJB)

equation—a partial differential equation which is central to

optimal control theory (see Haurie, Krawczyk and Zaccour

[12], Başar and Olsder [6], Zabczyk [32], Stokey Lucas

[29]). The HJB equation is assumed to return the value

function V as a function of state, with V(x) being the

maximal payoff if the system starts from x as the initial

condition. In the infinite horizon problem with discounting

with the rate r, the HJB equation is of the form rVðxÞ ¼
max

s
f current payoff ðsÞ þ oVðxÞ

ox � state transition ðx; sÞg
for each x, where s is the control parameter. If a regular

solution V of the HJB equation exists, an optimal control

can be found as the maximizer of the right hand side of the

HJB equation with the actual value function V. In the

infinite horizon, a sufficient condition for a continuously

differentiable function V to be the value function and a

feedback control s to be optimal is that V fulfils the HJB

equation, s maximizes its right hand side and V fulfils the

terminal condition lim sup
t!1

VðXðtÞÞe�rt ¼ 0 for every

admissible trajectory of the state. Since in our problem, the

state is one dimensional, the HJB equation becomes an

ordinary differential equation.

Proof The Hamilton–Jacobi–Bellman equation for any

function V(x) can be written as

rVðxÞ ¼ sup
si2½0;Mx�n

Xn

i¼1

P� C �
Xn

j¼1

sj

 !
si

" #

þ nx�
Xn

j¼1

sj

 !
oVðxÞ
ox

: ð4:7Þ
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To calculate the optimal strategy Si, differentiate the right

hand side of Eq. (4.7) with respect to si and equate to 0. We

get the optimal value �si as

2�si ¼ P� C �
Xn

j ¼ 1; j 6¼ i

sj �
oVðxÞ
ox

; i ¼ 1; 2. . .n:

ð4:8Þ

Note that the right hand side of Eq. (4.8) with �si subtracted

from both sides is identical for all i. So, the optimal value �si
is the same for all n miners.

Since M is sufficiently large, the optimal value �si is

always less than or equal to Mx.

Now, a candidate for the social optimum value function

can be found by solving the following the differential

equation for given optimal �si and a function V(x),

rVðxÞ ¼ n P� C � n�sið Þ�si þ
oVðxÞ
ox

nx� n�sið Þ: ð4:9Þ

The quadratic structure of the social optimum problem

suggests that the value function is of quadratic form.

Therefore, we assume that the value function has the form

VðxÞ ¼ K þ Gxþ Hx2

2
; ð4:10Þ

for some constants H, G and K. Since this equation has to

hold for all x, the coefficients of x2; x and the constant term

on the left-hand side and the right-hand side have to be

equal. This yields two sets of values of the constants:

ðiÞ H ¼ 2ðr � 2nÞ;G ¼ �ðP� CÞðr � 2nÞ
n

;

K ¼ðP� CÞ2ðr � nÞ2

4rn2
;

ð4:11Þ

ðiiÞ Ĥ ¼0; Ĝ ¼ 0; K̂ ¼ ðP� CÞ2

4r
; ð4:12Þ

Case 1 If the constants are as in (i), then the optimal

solution is �si ¼ ð2�rÞCxþnRðr�1Þ
nC , only if 0� �si\Mx.

(a) For 0� x\x̂0, the zero-derivative �si � 0 so, for this

interval of x, the optimal strategy will be �si ¼ 0. Thus,

player i will wait with the waiting time �tðxÞ, without

any energy consumption for X(t) to grow from x at 0 to

x̂0 at �tðxÞ. The dynamics of the electricity becomes:
dXðtÞ
dt ¼ nXðtÞ;Xð0Þ ¼ x. Solving the differential equa-

tion forX givesXðtÞ ¼ xent. So, xent ¼ x̂0. Solving this

for t ¼ �tðxÞ we have the waiting time as

�tðxÞ ¼ lnðx̂0Þ�lnðxÞ
n . The value function for this interval

of x is given by e�r�tðxÞ Hx̂0
2

2
þ Gx̂0 þ K

� �
, which

simplifies to x
x̂0

� �r
n Hx̂0

2

2
þ Gx̂0 þ K

� �
.

(b) For x̂0 � x\x̂1, the optimal decision is �si ¼
ð2�rÞCxþnRðr�1Þ

nC and the value function is

Hx2

2
þ Gxþ K.

Case 2 If the constants are as in (ii), then the optimal

solution is �si ¼ P�C
2n only if 0� �si\Mx and the value

function is K̂ ¼ ðP�CÞ2

4r .

The function VSO defined by Eq. (4.6), composed from

Case 1 and Case 2, is continuous and continuously

differentiable, it fulfils the HJB equation and the profile

SSO defined by Eq. (4.4) maximizes the rhs. of the HJB

equation with VSO. The terminal condition is trivially

fulfilled since VSO is bounded.

Therefore, the social optimum strategy profile is given

by Eq. (4.4) while the total profit of a miner is given by

Eq. (4.6). h

4.2 Calculation of Nash equilibrium

Next, we illustrate the process of calculation of a Nash

equilibrium strategy profile and we derive the unique

greedy/myopic Nash equilibrium—solution of the non-co-

operative game and the total profit of a selfish miner cor-

responding to it.

Given the strategies of the remaining miners S� i, the

optimization problem of miner i is defined by

sup
Si2½0;Mx�

Ji x0; ½Si; S� i�ð Þ ð4:13aÞ

_XðtÞ ¼ nXðtÞ � SiðXðtÞÞ �
Xn

j ¼ 1; j 6¼ i

SjðXðtÞÞ; ð4:13bÞ

Xð0Þ ¼ x0: ð4:13cÞ

However, a feedback Nash equilibrium, besides solving

n dynamic optimization problems, requires finding a fixed

point of the resulting best response correspondence (in the

space of feedback profiles). Presence of constraints on

energy consumption dependent on x makes the problem so

compound that it is not solvable in a way analogous to that

used in the proof Theorem 1, i.e. using the undetermined

coefficient method assuming quadratic value function for

the model without constraints, then replacing the solution

at points of violation of constraints pointwise by the vio-

lated constraint and proposing the total payoff for the

resulting solution as the candidate for the value function

and checking the sufficient condition.

Theorem 2

(a) The problem cannot be solved in a way analogous to

the proof of Theorem 1.

(b) A profile defined by
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S NE
i ðxÞ ¼

Mx x\~x0

P� C

nþ 1
x� ~x0:

8
<

: ð4:14Þ

for ~x0 ¼ P�C
Mðnþ1Þ is a myopic Nash equilibrium strat-

egy profile.

The total payoff or profit of miner i at this myopic Nash

equilibrium strategy profile is given by

V NE
i ðxÞ¼

�Hx2

2
þ �Gxþ �K x\~x0

VIðxÞþ e�r~tðxÞ
�H ~x2

0

2
þ �G~x0 þ �K

� �
~x0�x\~x1

ðP�CÞ2

rðnþ1Þ2
x� ~x1:

8
>>>>>>>><

>>>>>>>>:

ð4:15Þ

for constants �H ¼ 2M2n
2n�r�2nM ; �G ¼ MðP�CÞ

rþnM�n ;
�K ¼ 0: ~x1 ¼

nðP�CÞ
ðnþ1Þn ; ~tðxÞ ¼ ln

nM�nð Þ �PþCð Þ
n x�PþCð Þnþn xð ÞM

� �
n�1 and VIðxÞ ¼ � Pð

�CÞ2 nM�nð Þ �PþCð Þ
n x�PþCð Þnþn xð ÞM

� ��r
n�1

� �
r�1 nþ 1ð Þ�2:

Proof (a) We start the proof similarly to the proof of

Theorem 1, by an attempt to derive a preliminary candi-

date, we modify it to encompass constraints and check a

sufficient condition.

Fix any i and consider the optimization problem of

player i given strategies of the others �Sj symmetric. The

Hamilton–Jacobi–Bellman equation for any function ViðxÞ
can be written as

rViðxÞ ¼ sup
si2½0;Mx�

P� C �
Xn

j¼1;j 6¼i

�SjðxÞ � si

 !
si

þ nx� si �
Xn

j ¼ 1; j 6¼ i

�SjðxÞ

0

B@

1

CA
oViðxÞ
ox

:

ð4:16Þ

To calculate the optimal mining strategy si, differentiate

the right hand side of Eq. (4.16) with respect to si and

equate to 0. We get the zero-derivative point �si as

2�si ¼ P� C �
Xn

j ¼ 1; j 6¼ i

�SjðxÞ �
oViðxÞ
ox

; i ¼ 1; 2. . .n:

ð4:17Þ

Since the problem is symmetric and the current payoff

strictly concave, we look for symmetric solutions i.e. such

that �SjðxÞ ¼ �si, and, consequently, Vi ¼ Vj.

Now, a candidate for a symmetric Nash equilibrium

value function can be found by solving the following

differential equation for given optimal �si and a function

ViðxÞ,

rViðxÞ ¼ P� C � n�sið Þ�si þ
oViðxÞ
ox

nx� n�sið Þ: ð4:18Þ

The quadratic structure of the problem suggests that the

value function is of quadratic form. Therefore, we assume

that the value function has the form

ViðxÞ ¼ K þ Gxþ Hx2

2
; ð4:19Þ

We substitute it to Eq. (4.18), and write equations for the

coefficients. We get two sets of values of the constants:

(i) H ¼ ðnþ1Þ2ðr�2nÞ
2n2 ; G ¼ �ðn2þ1ÞðP�CÞðr�2nÞ

2n2n and K ¼
ðrn2þr�2nÞðrn2þr�2n2nÞðP�CÞ2

4n2n2ðnþ1Þ2r
and (ii) �H ¼ 0, �G ¼ 0,

�K ¼ ðP�CÞ2

rðnþ1Þ2.

We substitute SiðxÞ ¼ �si from Eq. (4.17) to each of them

and we get that in case (i), �SiðxÞ[Mx for small x and for

all x� ~x0 the trajectory originating from such an x is

strictly decreasing (so it eventually end in the region of x in

which �SiðxÞ[Mx), while for (ii), �SiðxÞ�Mx for x� ~x0. So,

as a natural candidate for the Nash equilibrium strategy, we

take S NE
i . We calculate Jiðx; S NE Þ and we get V NE

i

as follows.

(1) For 0� x\~x0, the candidate for Nash equilibrium

strategy is Mx and if the initial condition is in this

area, X(t) remains in it. So, we get a quadratic

function with the coefficients of x2, x and constant

�H ¼ 2M2n
2n�r�2nM, �G ¼ MðP�CÞ

rþnM�n,
�K ¼ 0. Therefore, the

candidate for the value function in this case is given

by 2M2n
2ð2n�r�2MnÞ

x2

2
þ MðP�CÞ

rþMn�n x.

(2) If x� ~x1, then not only P�C
nþ1

�Mx, but ~x1 is a steady

state of dynamics with strategies P�C
nþ1

, since nx�
nðP�CÞ
nþ1

¼ 0 and each trajectory originating from this

set is nondecreasing. So, if the initial condition is in

this set, it remains in it. The payoff for x� ~x1 and

SNE is given by Jiðx; SNEÞ ¼ ðP�CÞ2

rðnþ1Þ2.

(3) For the initial condition ~x0 � x\~x1, the trajectory X

corresponding to P�C
nþ1

decreases over time. So, after

time ~tðxÞ it will reach the set in which the strategy is

Mx. It is given by Xð~tðxÞÞ ¼ ~x0, with the dynamics of

the electricity
dXðtÞ
dt ¼ nXðtÞ � nðP�CÞ

ðnþ1Þ ;Xð0Þ ¼ x: Solv-

ing this differential equation and inverting gives

~tðxÞ ¼ ln
nM�nð Þ �PþCð Þ
n x�PþCð Þnþn xð ÞM

� �
n�1:
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The payoff for x in this interval is given by Jiðx; SNEÞ ¼

e�r~tðxÞ H ~x0
2

2
þ G~x0 þ K

� �
þ
R~tðxÞ

0

e�rtgi x; P�C
nþ1

; P�C
nþ1

� �
dt.

Although the Bellman equation is fulfilled in (1) and (2)

and SNE
i maximizes its right hand side in those sets, for

~x0 � x\~x1, SNE
i does not maximize the right hand side of

the Bellman equation with VNE
i . Moreover, the function

VNE
i is not only non-differentiable at ~x1, but its derivative

tends to þ1 as x tends to ~x1 from below. So, standard tools

do not work. The latest results for solving such irregular

problems with infinite horizon by Baumeister et al. [7]

cannot be applied either since our model does not fulfil the

strong assumptions of [7].

b) It is easy to check that the profile SNE, which was

derived in the proof of a), maximizes giðx; si; SNE
� iÞ.

Therefore, a greedy Nash equilibrium strategy profile is

given by Eq. (4.14), while the total profit of a miner at this

profile is given by Eq. (4.15).

To show that SNE is the unique greedy Nash equilibrium,

we first look for the zero-derivative point of optimization

of player i. We get the unique solution

2�si ¼ P� C �
Xn

j ¼ 1; j 6¼ i

�SjðxÞ; i ¼ 1; 2. . .n: ð4:20Þ

Subtracting �si from both sides yields identical rhs for all i,

so, all �si are identical. The maximized function is strictly

concave, so maxima are �si ¼ P�C
nþ1

, if it does not exceed Mx,

while otherwise all of them are Mx. h

Next, we graphically show the total profit and mining

strategy for both: the social optimum and the unique

greedy/myopic Nash equilibrium case. Figures 1 and 2 are

drawn for the values of constants: M ¼ 2; P ¼
11511; C ¼ 5:327; n ¼ 10; n ¼ 0:03; r ¼ 0:02.

Figure 1 shows the total profit earned by a miner in USD

by consuming electricity strategically, depending on the

optimal strategy profile (see Fig. 2): both in the cooperative

or non-cooperative case. In Fig. 2, an interesting property

of optimal strategy profile is that for x� x̂0, miners refrain

from mining in order to let the energy resource to regen-

erate. For the same x, at a myopic Nash equilibrium, miners

use electricity with the maximal available intensity, leading

to fast depletion of the resource.

5 Enforcing social optimality by a tax-
subsidy system

In this section, we consider a tax system or penalty system

which can be implemented by an external authority. Some

work before on this topic can be seen in [1, 2]. We provide

this system only as an example for future cryptocurrencies

as this system would be difficult to implement at this stage

in BTC.

If the miners consume more electricity than the social

optimum or social welfare level, then they pay an extra

amount to the external authority for the amount of elec-

tricity consumed in excess of the social welfare level as

defined by the authority. This introduction of a tax system

is essential in order to maintain the equilibrium in a

cryptocurrency society and to make electricity sustainable.

If we will not be able to control electricity consumption,

then, besides contributing to the greenhouse effect, it may

lead to a serious electricity crisis in the near future.

We want to make sure that miners behave in a socially

optimal manner which is for the welfare of society through

a tax system or a tax-subsidy system which is linear to the

miner’s strategy si i.e.,

Tax ðx; siÞ ¼ sðxÞsi: ð5:1Þ

Formally, introduction of a tax or a tax-subsidy system is a

modification of the original non-cooperative game by

changing the payoffs. In our mining game model, the

current payoff function of miner i changes to

P� C �
Xn

i¼1

si

 !
si � Tax ðx; siÞ: ð5:2Þ

We are interested in Pigovian type tax where tax is linear in

surplus over the socially optimal level. For those readers

unfamiliar with Pigovian tax, we refer them to more

background information in [25, 31]. To summarize here, if

a given miner consumes more energy than the social

optimum level he/she has to pay an extra amount as a

penalty for overuse of energy in mining beyond the socially

optimal level. We have seen related work shown in [28].

Fig. 1 Total profit of a miner at a greedy Nash equilibrium and the

social optimum
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Tax ðx; siÞ ¼ sðxÞ si � S SO
i ðxÞ

� �þ
: ð5:3Þ

Therefore, the total payoff function in the mining game

becomes

Jsi x; ½Si; S� i�ð Þ ¼
Z1

t¼0

e�rt P� C �
Xn

j¼1

SjðXðtÞÞ
 !

SiðXðtÞÞ � sðXðtÞÞ SiðXðtÞÞð

�S SO
i ðXðtÞÞ

�þ
dt:

ð5:4Þ

Definition 4 A tax-subsidy system enforces the mining

profile �S if �S is a Nash equilibrium mining strategy in the

new mining game with the total payoff defined by

Eq. (5.4).

Theorem 3 The tax rate, enforcing the socially optimal

behaviour of the miners is given by

sðxÞ¼max
2nxðr�2nÞþðP�CÞð3n�rÞ

n2
;
ðn�1ÞðP�CÞ

2n

� �
:

ð5:5Þ

Figure 3 presents the tax rate of a linear tax enforcing

strategy in the socially optimal profile. We can see that the

less electricity resource is left, the more substantial tax

rates are required.

Proof Consider the game with enforcing the social opti-

mum strategy profile. If a miner mines S SO
i then there is

no tax to be paid or subsidy to be obtained. So, if every

miner play S SO
i , each of them obtains the total profit

V SO
i ðxÞ and this is the optimal total profit for such an

appropriate sðxÞ, if it exists. So, the HJB equation for

V SO
i ðxÞ (given the others players play S SO

j ) becomes

rV SO
i ðxÞ ¼ sup

si2½0;Mx�
P�C� si �

Xn

j¼1;j 6¼i

S SO
j ðxÞ

 !
si

� sðxÞ si � S SO
i ðxÞ

� �þ

þ nx� si �
Xn

j¼ 1; j 6¼ i

S SO
j

0
B@

1
CA

oV SO
i ðxÞ
ox

:

ð5:6Þ

We start from x\x̂0 and we are going to find a tax rate for

which another function, P�C� si �
Pn

j¼1;j6¼i

S SO
j ðxÞ

 !

si � sðxÞ si � S SO
i ðxÞ

� �þ
þ nx� si �

Pn

j¼ 1; j 6¼ i
S SO
j

0
@

1
A

oV SO
i ðxÞ
ox ; is maximized. So, the first order condition for the

above optimization problem is

~si ¼
4n2xþ ððn� 2ÞðP� CÞ � 2rx� nsÞnþ rðP� CÞ

nnðnþ 1Þ :

ð5:7Þ

We want the optimal solution to be attained at maxf0; ~sig
¼ SSO

i . This holds for sðxÞ ¼ 2nxðr�2nÞþðP�CÞð3n�rÞ
n2 —substi-

tute ~si for this sðxÞ into Eq. (5.6) to see that it is fulfilled.

For x[ x̂0, the analogous solution is
ðn�1ÞðP�CÞ

2n and

Eq. (5.6) is also fulfilled.

Since the tax rate is multiplied by the nonnegative part

of si � SSO
i , increasing the tax rate does not spoil the

property of enforcing. So, to get a solution that works in all

cases, we take maximum of those two. Eq. (5.6) is then

fulfilled for all x. h

Fig. 3 Tax rate sðxÞ enforcing the socially optimal profile for the

values of constants: M ¼ 2; P ¼ 11511; C ¼ 5:327; n ¼ 10;
n ¼ 0:03; r ¼ 0:02

Fig. 2 Optimal strategy of a miner at a greedy Nash equilibrium and

the social optimum
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6 Conclusions

We view electricity as a semi-renewable resource, so it is

essential to use it strategically in order to maintain the

sustainability of the resource. In this paper, we consider a

continuous time dynamic game model of BTC mining in

Blockchain with infinite time horizon, which belongs to the

class of differential games. Although motivated by BTC,

work here is applicable in other resource mining based

Blockchain technologies currently and in the future. We

propose two types of solutions to our model, namely

Cooperative (Social Optimum) mining strategy, and Non-

Cooperative (Nash equilibrium and myopic Nash equilib-

rium) mining strategy. We calculate the total profit of a

miner in both cases. We have found that it is always

beneficial for the miners to consume or to use electricity

jointly, in cooperation with the others. Cooperation gives

the miner a higher total profit compared to a situation when

all miners mine selfishly. Moreover, if all miners choose to

mine according to a greedy Nash equilibrium mining

strategy, then the electricity resource will be depleted,

while it is sustainable if they choose to mine according to

the social optimum strategy. Our result fits nicely with the

common belief that mining in cooperation will be better

than mining individually in a non-cooperative game. We

also propose a tax system which falls into the Pigovian tax

category, linear in overuse of electricity by the miner, in

order to enforce social optimality in our BTC dynamic

game model. This way, miners will be forced to behave and

to mine in a way that is best for the social welfare of the

miners and guarantees sustainability of the resource.
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