
Counting with Neurons: Rule Application with Nets of Fatiguing Leaky Integrate
and Fire Neurons

Christian R. Huyck (c.huyck@mdx.ac.uk) and Roman V. Belavkin (r.belavkin@mdx.ac.uk)
Middlesex University, London NW4 4BT, UK

Abstract

This paper shows a system that performs simple symbolic pro-
cessing. The system is based entirely on fatiguing Leaky Inte-
grate and Fire neurons, a coarse model of neurons. Following
Hebb, the symbols are encoded by neurons that form Cell As-
semblies. Additionally simple rules of the formifX → X+1
are encoded by Cell Assemblies, and this symbolic computa-
tion is performed. Finally, a more complex rulewhileX <
F → X = X + 1 is encoded using variable binding via a
compensatory learning rule. This rule performs the symbolic
computation of counting entirely subsymbolically. The bind-
ing can be erased and reused via spontaneous neural activation.
Unlike the symbolic parallel, the counting rule fails at times
when humans might fail.

Introduction
Neurons have inspired a range of connectionist models in-
cluding multi-layer perceptrons, self-organising maps, and
Hopfield nets. These connectionist models are useful for a
range of tasks, but they make simplifications that may inval-
idate them as neural models. For example, most multi-layer
perceptron (MLP) systems learn by the supervised algorithm
of error back propagation, while neural learning is unsuper-
vised. One work, [Wiles and Elman, 1995], manages to count
with a recurrent MLP network, though it is not clear how this
dynamical systems model relates to neural processing.

There is a wide range of models of neurons, but they are
usually used to model neural behavior and are rarely used for
higher cognitive tasks. This paper describes a system based
on model neurons that simulates a simple symbolic process-
ing task.

There are a range of cognitive architectures based around
rules (e.g. ACT–R [Anderson and Lebiere, 1998], SOAR
[Laird et al., 1987], and EPIC [Kieras et al., 1997]). These
have proven quite successful in modelling psychological data
and for applications.

An alternative approach to the rule based model is a neu-
ral model. Neural models are more accurate descriptions of
biological neurons than other connectionist models. It is un-
clear how or even if cognition is implemented by rules. It
is however clear that cognition can be achieved by neurons.
The unanswered question is how cognition is generated by
neurons.

The scientific community has a sound if incomplete under-
standing of the function of biological neurons, but there is
much less known about how they work together. This is at
least partially due to the difficulty of inspecting a large num-
ber of neurons in a functioning animal. Scanning techniques,

such as fMRI, are too coarse to view individual neural behav-
ior. So computational modelling is a good method to explore
large numbers of neurons working together.

While there have been advances in implementing ACT–R
in a connectionist system [Anderson and Lebiere, 1998], it is
not clear how it would be implemented in a neural system.
In particular, it is not clear how the connections between the
neurons could be learned.

There is a long-standing neurally based psychological the-
ory. Hebb proposed Cell Assemblies (CAs) as the basis of hu-
man thought over 50 years ago [Hebb, 1949]. There has been
little large scale modelling of CA using neurons. While it is
relatively well understood how to categorise inputs using CAs
and other attractor networks, it is not clear how more sophis-
ticated processing can be done. For instance, it is not well un-
derstood how symbolic processing can be implemented with
CAs.

In this paper we describe a neural system that simulates
a form of symbolic processing. Simple arithmetic is a com-
mon symbolic task. The simulations first implement a series
of simple rules that perform an add one calculation. This re-
quires rules that only use Input CAs that represent constants.
These simple rules are then used as a basis for a second se-
ries of simulations that count. This counting makes use of
variable binding.

The simulations are based on fatiguing Leaky Integrate and
Fire (LIF) neurons, a reasonable model of biological neurons.
These simulations show a neural implementation of two sorts
of rules. Simple rules involving primitives are used to add.
A complex rule using variable binding is used along with the
simple rules to count. Later bindings are affected by earlier
bindings and may lead to problems in counting that might be
exhibited by a human.

The paper initially gives a background of work on CAs.
There is then a description of the simple rules, followed by
a description of the system that counts. These sections are
written for the uninitiated neural modeller and are followed
by a section that specifies details of the model. The paper
concludes with a discussion.

Background
Hebb proposed CAs as the basis of human thought
[Hebb, 1949], and there has been a long history of work based
around CAs (e.g. [Sakurai, 1998, Palm, 1990]). The ba-
sic idea is that concepts are represented by groups of neu-
rons, called CAs, that have high mutual synaptic strength.
If enough of these neurons fire, a cascade of neuronal firing

causes the reverberating circuit to remain active; this is called
CA ignition. After the stimulus ceases, the circuit can still
remain active via this reverberating activity.

There are a wide range of benefits of the CA model. Per-
haps the most powerful benefit over rule based models is sym-
bol grounding [Fodor, 2000]; symbols can be learned from
the environment and thus have a basis.

Hebb’s main argument for this type of model was figure-
ground separation. CAs are ignited for particular items in the
environment (figures) making them more salient, and these
salient figures can then be separated from the background.

A third advantage is that CAs give a neurally based expla-
nation for long and short-term memory. A short-term mem-
ory is the ignition and persistence of a CA; as long as the
activity persists the memory is active. Long-term memories
happen when the CA is formed via synaptic weight adjust-
ment.

A CA is an attractor state; most configuration of neural ac-
tivations never occur. Instead, when neurons are activated,
particular neural activation patterns are preferred. These pat-
terns or states are called attractor states. A CA is an attractor
state. So, a network of fatiguing LIF neurons is an attrac-
tor net. There has been significant work with attractor nets
such as Hopfield nets [Hopfield, 1982], and these attractor
nets have been used to model the brain [Amit, 1989].

Attractor nets, and thus nets of fatiguing LIF neurons, are
good at categorisation. An initial state is given to the network,
and it settles into a stable state that represents the category of
the initial input.

Unfortunately, there has been little work with getting at-
tractor nets to do more than categorise. A notable recent ex-
ception has a CA based system being used for robots that have
visual and textual input [Knoblauch and Palm, 2001].

While there has been a long history of CA-based models
that account for psychological phenomena, there has been lit-
tle work in developing large scale neural simulations of CA
activity. These systems are based on idealised models of CA
behavior. A good example of such a model is the TRACE sys-
tem [Kaplan et al., 1991]. Another model shows how a letter
matching task might be done [Dalenoort, 1985].

The system described below can be thought of as a bridge
from older idealised CA models for psychological tasks
to neural processing models of CAs. The neural mod-
els are capable of learning symbols based on environmen-
tal stimulus [Braitenberg, 1989, Huyck, 2004, Palm, 1990,
Sakurai, 1998].

Simple Rules
It may not be clear to those who commonly develop soft-
ware using rules, but there are different types of rules. In
this section, a system that implements several simple rules of
the form if1 + 2 → 3 is presented. In the next section an
extension that counts is presented. The simulations use fa-
tiguing LIF neurons. There has been considerable interest in
LIF neurons (e.g. [Tal and Schwartz, 1997]), though compar-
atively little work has made use of fatigue. The model we use
is a relatively simple model of neurons, but to a large degree
it is biologically plausible.

The simulation sections are written for the neural model
novice. Details of the model and simulations are provided in

Input
Network

Internal
Network

Rules
Network

Done
Network

?

... ?

......

6

@
@

@
@...........
..........
..........
..........

¡
¡

¡
¡

...........
..........
..........
..........

Figure 1: Simple Rule Topology

the section entitled Details of the Model.
In the simple rule simulation, there are four networks used

in the process of rule application, called the Input, Internal,
Rule and Done nets. Each contains neurons (between 200
and 2600), and these neurons form CAs (between 1 and 13).
Figure 1 represents the relationships between these networks.
Arrows represent excitatory activation and forks represent in-
hibition.

The general flow of control of the simulation is:

1. The Input net is activated from the environment igniting
CAs in it.

2. The Input net passes activation onto the parallel Internal
net, igniting parallel Internal CAs; the Internal net is used
to store later internal state.

3. The Internal CAs send activation along to the Rule net; a
Rule CA ignites if the Internal net has the antecedent (if)
CAs active.

4. The ignited rule CA sends activation to the consequent
(then) Internal CA, suppresses the antecedent CAs, and
sends activation to the Done network.

5. The Done network has one CA that suppresses the Input
and Rule nets.

6. The consequent Internal CA also suppresses the Rule CA
that ignited it.

7. The result of the interactions is that the consequent CA is
left running, the Done CA is left running, and all other CAs
are turned off.

There are 13 CAs in the Input network, 13 in the Internal
network, 10 in the Rule network, and one in the Done net-
work. The Input and Internal CAs correspond to the num-
bers1 to 12 and the+ sign. The 10 rules correspond to
if1 + 2 → 3 throughif1 + 11 → 12.

For example, neurons in the1, 2, and+ Input CAs are ex-
ternally activated. This causes a cascade of activation within
these CAs leading to many neurons firing in each step. After
10 steps, external activation is removed. If the Internal net
were isolated, those CAs would continue to run indefinitely.

0
50

100
150
200
250

Input 2 CA

0
50

100N
e
u
r
o
n
s

150
200 Internal 2 CA

Internal 3 CA

0
50

100F
i
r
i
n
g

150
200 Rule 1 CA

Rule 2 CA

0
50

100
150
200

0 10 20 30 40 50
Cycles

Done CA

Figure 2: Neural Activity in different networks for1+2 → 3

Activation is passed from the Input1, 2, and+ CAs to the1,
2, and+ Internal CAs causing them to ignite. In turn activa-
tion is passed from the ignited Internal CAs to the Rule net.
Since the1, and+ CAs are active and they are antecedents
of all of the rules, all of the rules receive some activation. In-
hibitory connections between the Rule CAs causes the rules
to compete. As theif1+2 → 3 rule is the only one with three
antecedents active, it receives more activation than other rules
and wins the competition and it ignites.

When theif1 + 2 → 3 CA ignites, it sends activation to
the 3 Internal CA and also inhibits the Internal1, 2, and+
CAs. More or less simultaneously, the done CA ignites and
the 3 Internal CA ignites. Next, the Done CA turns off the
Input 1, 2, and+ CAs, while the Internal3 CA inhibits the
Internal2 CA. The combination of fatigue in its own neurons,
loss of activation from the Input net, and suppression from the
Internal3 and Rule CA causes the1, 2, and+ Internal CAs
to shut down. Finally, the inhibition from the Internal3 and
Done CAs causes theif1 + 2 → 3 Rule CA to shut down.

Figure 2 shows this process. It shows the number of neu-
rons firing per cycle for the described CAs. Note that some
neurons in the second rule fire, but the CA is suppressed by
the first rule when it ignites.

Counting using Rules with Variable Binding
The simple rules are used as the basis of a more complex
system that counts from one variable to another. For example,
the system may count from 3 to 6, and the same system can
be reused to count again from 4 to 9.

Input
Network

Internal
Network

Rules
Network

Done
Network

?

... ?

......

6

@
@

@
@...........
..........
..........
..........

¡
¡

¡
¡

...........
..........
..........
..........

Bind
Network

Finish
Network

Reset
Network

?
6

...

@
@

¡
¡µ

Figure 3: Topology of the Counting System

The simple rule topology is augmented with three new nets,
Bind, Finish, and Reset. This topology is shown in Figure 3.
The line between the Bind and Internal networks represents
learned connections in both directions. The simple rule archi-
tecture from Figure 1 forms the core of this topology. As with
Figure 1, arrows represent excitation and forks inhibition.

Initially, the final value is remembered by the system by
presenting it to the Input network, and stimulating the Finish
CA. Later this value is erased by spontaneous activation.

When counting starts, the initial value is presented to the
Input Network and the Reset CA is stimulated. Both Reset
and Finish nets have one CA each. The Reset CA sends ac-
tivation to the Internal1 and+ CAs causing them to ignite.
The ignited Internal CAs activate rules, which turn off the In-
ternal1 and+ CAs, and ignite the subsequent CA. The reset
net is still on, so the Internal1 and+ CAs come on again and
the process is repeated until the final Internal CA is ignited.

The initial presentation of the Finish CA causes the Bind
CA to ignite. The Bind CA has connections to and from the
Finish CA and the Internal network. The only part of the
system that learns is the Bind network and the connections
to and from the Internal and Finish networks. As the Bind
CA is now active it learns becoming associated with the final
Internal CA. This learning is unsupervised and is based on
neural co-firing. So, when the final Internal CA comes on,
the Bind CA and thus the Finish CA comes on.

The Finish CA has strong inhibitory connections to the Re-
set CA in addition to connections to the Bind CA. So when
the Finish CA ignites, it shuts down the Reset CA, and the
process stops.

After this process, the binding is partially erased to enable
the system to count again. This is done by spontaneous acti-
vation in the Internal and Bind Networks. The Bind network
has two components with an equal number of neurons. The
Bind CA and another component that does not actually rever-
berate and is thus not a CA. This extra component acts as a
synaptic strength sink.

Our simulations use a form of Hebbian learning called
compensatory learning [Huyck, 2004]. As with all Hebbian
learning, excitatory synapses are strengthened when the neu-
rons they connect fire simultaneously. An anti-Hebbian learn-
ing rule is also used so that the excitatory synapses are weak-
ened if only the presynaptic neuron fires without the postsy-

N
e
u
r
o
n
s

F
i
r
i
n
g

0

50

100

150

200

0 50 100 150 200
Cycles

3 CA
4 CA
5 CA
6 CA

Figure 4: Selected Activity in the Count System Counting
from 3 to 6

naptic neuron firing. The compensatory learning rule forces
the total synaptic strength of a neuron toward a predefined
constant value. There are parallel rules for inhibitory neurons
so that co-firing inhibitory synapses are reduced toward zero
becoming less inhibitory.

During spontaneous activation, a neuron in the bound In-
ternal CA may fire while a neuron in the Bind CA it is con-
nected to does not. This weakens that connection. Addition-
ally, the bound Internal neuron may be connected to a neuron
in the other part of the Bind network. If this neuron also fires,
it will remove synaptic strength that may be used for a new
binding. Spontaneous neural firing is a property of biological
neurons [Bevan and Wilson, 1999, Abeles et al., 1993]. Re-
lated work with fatiguing LIF neurons indicates that sponta-
neous neural activation has useful properties for CA systems
[Huyck and Bowles, 2004] and can be used for variable bind-
ing [Huyck, 2005].

For example the system counts from 3 to 6. Initially, Finish
and the Input 6 CA are externally stimulated causing the input
6, internal 6, Finish and Bind CAs to ignite. As Bind and
Internal 6 CA neurons are frequently co-active, the synaptic
strength between them is increased.

After binding, the system starts by activating the Internal3,
and the Reset CA. Reset activates the Internal1 and+ CAs
igniting them. This in turn activates theif1 + 3 → 4 Rule
CA, and as in the prior section the Internal4 CA comes on.
Again as in the prior section, Done comes on, the Input layer
is shut down, the Rule CA is shut down and the Internal1, 3,
and+ CAs are shutdown.

The Reset CA again ignites the Internal+ and1 CAs lead-
ing to the rule igniting followed by the Internal5 CA igniting.
This process repeats itself until the Internal6 CA comes on.
As this is bound to the Bind CA and the Bind CA activates
the Finish CA, they both come on. The Finish CA suppresses
the Reset CA turning it off. The process then ceases.

Figure 4 shows an example of neural activity. It shows
the neurons firing per cycle in the 3 to 6 Internal CAs during
counting from 3 to 6. Activity in the1 and+ CAs are not
shown.

The binding is then erased by spontaneous activation. The
system can then be reused for further counting for example
from 4 to 9. This process usually succeeds, but interestingly,

it fails occasionally by stopping at 6. This is sensible be-
cause the system stops an earlier binding that should have
been erased. This shows a typical error subjects manifest dur-
ing various symbolic tasks.

Details of the Neural and Network Model
The basis of the model is fatiguing LIF neurons. Neurons col-
lect activation from other neurons via synaptic connections.
If the neuron does not fire some of that activation leaks away.
Equation 1 describes the activation of a neuroni at timet if it
does not fire at timet− 1.

Ait
=

Ait−1
d +

∑
j∈Vi

wji, 0 < d < 1 (1)
The amount of leak isd. Vi is the set of all neurons that have
connections toi and fire at timet−1. The weight, or synaptic
strength, of the connection from neuronj to neuroni is wji.

Neurons also fatigue so that the more steps they fire the
more difficult it becomes for them to fire. This is modelled
by increasing the activation thresholdθ if a neuron fires as
described by Equation 2.

θt = θt−1 + Fc (2)
In Equation 2 the thresholdθ at timet is set to the threshold
at timet-1 + the fatigue constantFc. If the neuron does not
fire, the threshold is reduced toward the base resting level as
in Equation 3.

θt = θt−1 − Fr (3)
The threshold is reduced by the fatigue recovery constantFr

though it never becomes less thanθ. So a neuron fires if it has
more activity than the threshold plus accumulated fatigue. If
it fires, it loses all activity.

In this system, neurons may be inhibitory or excitatory, but
they obey Dale’s principle [Eccles, 1986] so that a neuron
cannot have both inhibitory and excitatory synapses leading
from it. The ratio is usually 80/20 excitatory/inhibitory as in
the mammalian cortex [Braitenberg, 1989].

The fatiguing LIF parameters are described in Table 1. The
first major difference between nets is that the Done network
is largely inhibitory because it is used to suppress other net-
works. The Bind network has a larger threshold and a slightly
larger leak factor to make it more tolerant to input noise.

Network θ d Fc Fr Inhibition
Input 4 1.5 1.0 2.0 20%

Internal 4 1.5 1.0 2.0 20%
Rules 4 1.5 1.0 2.0 20%
Done 4 1.5 1.0 2.0 80%
Finish 4 1.5 2.0 2.0 20%
Bind 6 2.0 2.0 2.0 20%
Reset 4 1.5 2.0 2.0 20%

Table 1: Fatiguing LIF Parameters by Network

Synaptic weights are modified by a compensatory Heb-
bian learning rule described by Equations 4 and 5 (see
[Huyck, 2004]). Equation 4 is applied when neuronsi and
j fire in the same cycle. Equation 5 is an anti-Hebbian rule
applied when the presynaptic neuroni fires and the post-
synaptic neuronj does not.

∆+wij = (1− wij) ∗R ∗ 5(WB−Wi) (4)
∆−wij = (wij) ∗ −R ∗ 5(Wi−WB) (5)

The learning rate is a constantR (0.1 in these simulations),
and the first two terms of both rules are the standard corre-
latory learning rules. The compensatory modifier is the last
term. WB is a constant which represents the average total
synaptic strength of the pre-synaptic neuron, andWi is the
current total synaptic strength. This modifier forces the total
synaptic weight of a neuron towardWB .

Synaptic weights for most nets and connections between
nets are calculated before hand. The only case where they are
learned is within the Binding network, between the Binding
and Finish networks, and between the Binding and Internal
networks. The target synaptic weight,WB , for the Bind net-
work is 30, for the Finish network is 35, and for the Internal
network is 15.

CAs Synapses Inter-CA Intra-CA
Input 13 150 1.0†/-0.01 0.01/-0.12

Internal 13 150 1.0†/-0.01 0.01/-0.12
Rules 10 150 1.2†/-0.01 0.01/-4.0
Done 1 150 1.0†/-0.01 none
Finish 1 30 1.0†/-0.01 none
Bind 1‡ 50 learned learned
Reset 1 30 1.0†/-0.01 none

Table 2: Topology within Nets

The topology within nets can be described by Table 2. All
CAs consist of 200 neurons and they are orthogonal, no neu-
ron is in two CAs. The Input net has 13 CAs and thus 2600
neurons. Each neuron has 150 synapses to other neurons in
the net. These neurons are connected randomly, though a neu-
ron cannot connect to itself. The weights are predetermined,
so a neuron in a CA has a connection to another neuron in the
same CA with weight 1 if it is an excitatory neuron or -0.01 if
it is inhibitory. Connections to other neurons outside the CA
have a 0.01 or -0.12 weight. There are two caveats within this
table. The Inter-CA connections marked by†have an weight
of this number. The 1.0 number (e.g. Input) is calculated by
1.5 - a random number between 0 and 1, and the 1.2 number
in Rules is 1.7 minus a random number between 0 and 1. The
second caveat, as described in the section on counting and
denoted by‡, is that the Bind net has one CA, but also has
an additional 200 neurons that never form a CA; these extra
neurons act as activation sinks during unbinding.

Table 3 describes the number of synapses per neuron from
one net to another. The presynaptic net is in the column, and
the postsynaptic net the row. So, each Input neuron has 50
connections to the Internal network. All of these are ran-
domly assigned. The connections within a net are marked
by * and are described in table 2.

The weights of these connections are set in all cases ex-
cept between Internal and Finish and Bind. Input to Internal
weights are 2.0 minus a random number if they are paral-
lel, and 0.1 if not; inhibitory connections are -0.1. Internal
to Rules have 0.36/-0.01 and 0.01/3.6 weights. Rules to In-
ternal stimulating weights are 2.8/0.01, suppressing weights
are 0.01/-4.0, and neutral weights are 0.01/-0.01. Rules to
Done are 0.4/-0.1, Done to Input are 0.01/-1.0, and Done to
Rules are 0.01/-0.5. Finish to Reset are 0.01/-1.0, and Finish
to Rules are 0.01/-4.0. Reset to Internal weights are 0.5/-0.1

Input Int. Rules Done F B R
Input * 50

Internal * 20 10
Rules 60 * 10
Done 100 30 *
Finish 50 * 15 50
Bind 15 15 *
Reset 50 *

Table 3: Topology between Nets

to the Internal+ and1 CAs, 0.01/-0.01 otherwise.
Initially some training is needed to put the Finish, Bind,

and Internal learnable weights to a good position. This is
done by an initial 400 cycles of spontaneous activation to the
bind net. This is followed by alternating presentations of Fin-
ish and Bind instances with instances of the non-Bind neu-
rons. In each case 50 neurons are selected at random from
the patterns and receive external activation. They are pre-
sented for 10 cycles, and then the system is allowed to run for
40 more cycles. The fatigue and activity are then reset. This
continues for a total of 1600 cycles. So, by the 2000th cycle
Finish and Bind are CAs that are to some extent connected.

Binding occurs by presenting 50 neurons of the Input CA
to be bound, and 50 of the Finish CA’s are externally stimu-
lated for 10 cycles. This is then allowed to run for a further
190 cycles. By this time, the Internal CA is bound to the Bind
CA, and thus to the Finish CA.

Unbinding is achieved by 1200 cycles of spontaneous acti-
vation of the Bind and Internal networks. During spontaneous
activation each neuron has a one percent chance of firing.

The system is by no means perfect, but it works in prin-
ciple. We ran the system with 50 different nets, each time
counting from 3 to 6, then from 4 to 9 to show that bind-
ing can be erased and reused. 74% of the time it correctly
counted from 3 to 6. On the second test, 50% of the time it
counted from 4 to 9; 28% of the time it stopped prematurely
at 6 showing that the binding was not properly erased; 22%
of the time it ended somewhere else.

Conclusion and Discussion
Clearly this is a very simple cognitive model of counting.
Also the model is not matched to psychological data, and tim-
ing is described only by cycles.

What is interesting is that a neural model does the symbolic
counting task at all. Moreover, from a cognitive modelling
perspective, it exhibits some similarities to human symbolic
processing: it fails sensibly when counting stops at a prior
binding that should have been erased.

Another interesting result is this shows a neural reason for
classifying rules. Rules using only constants are different
from those using variables. Simple rules are based on con-
stants and are of the formifc1c2 . . . cn → cmcm+1 . . . cp and
these only require the proper sort of excitatory and inhibitory
links. The counting rule is more complex and could be de-
scribed bywhileX < F → X = X + 1. TheX = X + 1
portion is handled by the simple rules, but theF portion re-
quires binding.

Of course there is a long way to go to have a complete
neurally based cognitive model of this phenomena and even
further to have a solid cognitive model. A relatively simple
expansion of the system could enable it to learn new simple
rules likeif3+2 → 5 This would require a process of adding
beyond one, but would then allow the system to cache results
it had processed earlier. This would be similar to chunking
[Laird et al., 1987]

There are more complex modifications that could improve
the model. It could be tied to psychological data; timing could
be modelled by attaching a time, say 10 ms, to a cycle; system
parameters could be modified to correspond to failure rates in
counting. More rapid binding could be done by using short-
term synaptic changes instead of long-term changes. Spon-
taneous activation could be used all the time instead of just
during binding activities. A sensory system could be devised
and the system could actually learn numbers by learning to
count items in the environment. This would provide a much
sounder grounding to the numerical concepts.

While these modifications seem tenable, we have no idea
how the connections between nets (aside for Input to Inter-
nal) could be learned. There could be another topology that
did the same task, but again we have no sound idea how this
topology could be learned. The simple rules described above
encode a sequence. There has been some work on learning
sequences with neurons, and this provides some guidance for
learning other processes. This work highlights the need for
a better understanding of the mechanisms required to learn
symbolic processing tasks with neural systems.

A neural system develops, in the long-term, by a change
in synaptic strength. This self-organisation should enable the
system to learn tasks and not have them simply programmed.
There have been advances in understanding how a neural sys-
tem can learn to categorise, but we are not aware of a sound
theory that specifies the boundaries of what is learned and
when. Perhaps the development of such a theory will shed
light on learning more complex processes such as counting.

References
[Abeles et al., 1993] Abeles, M., Bergman, H., Margalit, E.,

and Vaadia, E. (1993). Spatiotemporal firing patterns in
the frontal cortex of behaving monkeys.Journal of Neuro-
physiology, 70:4:1629–38.

[Amit, 1989] Amit, D. (1989). Modelling Brain Function:
The world of attractor neural networks. Cambridge Uni-
versity Press.

[Anderson and Lebiere, 1998] Anderson, J. and Lebiere, C.
(1998). The Atomic Components of Thought. Lawrence
Erlbaum.

[Bevan and Wilson, 1999] Bevan, M. and Wilson, C. (1999).
Mechanisms underlying spontaneous oscillation and
rhythmic firing in rat subthalamic neurons.Journal of Neu-
roscience, pages 7617–7628.

[Braitenberg, 1989] Braitenberg, V. (1989). Some arguments
for a theory of cell assemblies in the cerebral cortex. In
Nadel, Cooper, C. and Harnish, editors,Neural Connec-
tions, Mental Computation. MIT Press.

[Dalenoort, 1985] Dalenoort, G. J. (1985). The representa-
tion of tasks in active cognitive networks.Journal of Cog-
nitive Ssytems, 1:3:253–272.

[Eccles, 1986] Eccles, J. (1986). Chemical transmission and
dale’s principle.Prog. Brain Research, 86:3–13.

[Fodor, 2000] Fodor, J. (2000).The Mind Doesn’t Work That
Way: the Scope and Limits of Computational Psychology.
MIT Press.

[Hebb, 1949] Hebb, D. O. (1949).The Organization of Be-
havior. J. Wiley & Sons.

[Hopfield, 1982] Hopfield, J. (1982). Neural nets and physi-
cal systems with emergent collective computational abili-
ties. Proc. of the National Academy of Sciences, 79.

[Huyck, 2004] Huyck, C. (2004). Overlapping cell assem-
blies from correlators.Neurocomputing, 56:435–9.

[Huyck, 2005] Huyck, C. (2005). Variable binding of cell
assemblies with binding areas and spontaneous neural ac-
tivation. In Proceedings of the 22nd Workshop of the Eu-
ropean Society for the Study of Cognitive Systems.

[Huyck and Bowles, 2004] Huyck, C. and Bowles, R.
(2004). Spontaneous neural firing in biological and artifi-
cial neural systems.Jour. of Cognitive Systems, 6:1:31–40.

[Kaplan et al., 1991] Kaplan, S., Sonntag, M., and Chown,
E. (1991). Tracing recurrent activity in cognitive ele-
ments(trace): A model of temporal dynamics in a cell as-
sembly.Connection Science, 3:179–206.

[Kieras et al., 1997] Kieras, D., Wood, S., and Meyer, D.
(1997). Predictive engineering models based on the
epic architecture for a multimodal high-performance
human-computer interaction task.ACM Transactions on
Computer-Human Interaction, 4:3:230–275.

[Knoblauch and Palm, 2001] Knoblauch, A. and Palm, G.
(2001). Pattern separation and synchronization in spiking
associative memories and visual areas.Neural Networks,
14:763–780.

[Laird et al., 1987] Laird, J., Newell, A., and Rosenbloom,
P. (1987). Soar: An architecture for general cognition.
Artificial Intelligence, 33:1.

[Palm, 1990] Palm, G. (1990). Cell assemblies as a guideline
for brain research.Concepts in Neuroscience, 1:1:133–47.

[Sakurai, 1998] Sakurai, Y. (1998). The search for cell as-
semblies in the working brain.Behavioral Brain Research,
91:1–13.

[Tal and Schwartz, 1997] Tal, D. and Schwartz, E. (1997).
Computing with the leaky integrate-and-fire neuron: Log-
arithmic computation and multiplication.Neural Compu-
tation, 9:2:305–318.

[Wiles and Elman, 1995] Wiles, J. and Elman, J. (1995).
Learning to count without a counter: A case study of dy-
namics and activation landscapes in recurrent networks. In
Proceedings of the 17th Annual Conference of the Cogni-
tive Science Society, pages 482–487.

