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Abstract Most users hesitate to use third-party web

applications because of security and privacy concerns.

An ideal solution would be to allow apps to work with

encrypted data, so that users might be more willing to

provide just the encrypted version of their sensitive da-

ta. ShadowCrypt, proposed in CCS 2014, is the first

and so far only solution that can achieve this by lever-

aging the encapsulation provided by Shadow DOM V0,

without the need for the users to trust neither serv-

er nor client codes of web applications. Unfortunate-

ly, researchers shown ShadowCrypt to be vulnerable to

several attacks. Furthermore, since 2015 ShadowCryp-

t is no longer compliat to the updated W3C standard,

and some attacks have been proposed for ShadowCrypt.
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Hence, currently there is no effective and secure solu-

tion to serve the purpose.

In this paper, we present ShadowFPE, a novel format-

preserving encryption that makes use of a robust prop-

erty in Shadow DOM to obtain a feasible solution. Com-

pared to ShadowCrypt, our solution does not destroy

the data format and make the data usable in most cloud

web applications. We confirmed the effectiveness and

the security of ShadowFPE through case studies on

web applications. Our results show that ShadowFPE

is practical as it has low overhead and requires minimal

modification in existing applications compared to the

existing applications.

Keywords Format-preserving encryption · Shad-

owCrypt · data privacy · Shadow DOM · encrypted

web applications.

1 Introduction

With the increasing popularity of cloud computing, more

and more web applications are deployed in clouds to

provide services. These web applications are called Soft-

ware as a Service (SaaS). While SaaS reduces the cost

of software delivery and maintenance, most users still

hesitate to use these web applications due to the se-

curity and privacy concerns, because cloud servers and

client-side codes are both untrusted. Weak authentica-

tion, application vulnerabilities, employees’ misbehav-

ior, and other attacks on web, all might lead to data

leakage and further reduce the confidence of customers.

In this section, we will introduce the encrypted web

applications in details. Moreover, we will describe mer-

its and limitations of ShadowCrypt. Finally, our contri-

butions show that the proposed ShadowFPE can solve

the ciphertext storage and identification problem.
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1.1 Encrypted web applications

To encrypt web application data, most proposals adop-

t the approach of encrypting the data before storage

while requiring as little modification as possible for ap-

plications. The encryption can occur in three locations

which can also be called “chokepoints”, as shown in

Figure 1.
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DOMDOM c
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user
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Fig. 1: Chokepoints (a), (b), (c) for data encryption in web
application.

Chokepoint (a) is between the front end and the

database, where data is encrypted before reaching the

database server. A typical scheme is CryptDB [5]. This

design protects user privacy against an untrusted/com-

promised database server, however, it suffers attacks

such as SQL injection or XSS attacks from web browser-

s. And the user has no control on the decryption keys.

Chokepoint (b) is between the client and the net-

work, where the application’s client-side JavaScript code

encrypts the data before sending it to the server-side.

This design is the most commonly used solution today.

Popular applications (e.g., LastPass [15], Mega, Cryp-

toCat [16]) and some researches (e.g., [13, 14]) all apply

this design. Although private data can be accessed on-

ly by application’s client side (i.e., JavaScript/HTML),

bugs in the client-side codes (e.g., XSS) could also com-

promise the security by leaking data in plaintext. For

example, LastPass and CryptoCat both have suffered

from client-side vulnerabilities. Client-side codes may

not be trustable too [15, 16].

The ideal location for encryption is in Chokepoint

(c), where data is encrypted before the application codes

(including the client-side codes) can access it. This de-

sign makes the application only able to access encrypt-

ed data. “ShadowCrypt” is based on this idea and was

proposed in 2014, which runs as a browser extension

and ensures that the secure encryption/decryption op-

erations are controlled by the user. ShadowCrypt can

achieve a higher security level against attacks in appli-

cation server-side, the network, and even the client-side

application code (i.e., the DOM and JavaScript).

1.2 Merits and limitations of ShadowCrypt

Merits: Encryption in Chokepoint (c) was unexplored

until ShadowCrypt was proposed in 2014, which brings

a new design idea for encrypted web applications. As

far as we know, ShadowCrypt is the only solution for

it.

The key innovation of ShadowCrypt is to build a

secure input/output environment by leveraging the en-

capsulation power of Shadow DOM in the web brows-

er. The novelty stems from a functionality of Shadow

DOM (“multiple shadow roots”, see Section 2 for more

details) that allows the web browser to render DOM

elements without putting them into the main docu-

ment DOM tree, and thus it can defend the malicious

JavaScript/HTML codes fetching the clear texts from

the input/output elements.

Another contribution of ShadowCrypt is to provide

a generic solution for text-based web applications (e.g.,

Gmail, Facebook, Twitter) such that without any mod-

ification in the applications, users are able to encrypt

data while still able to use most of the functionalities.

There are two challenges in order to achieve this: ci-

phertext identification from HTML codes and keyword

search [1, 2] (the only frequent operation over encrypt-

ed text). For the former, ShadowCrypt adds both the

prefix and postfix to the encrypted text. For the latter,

it computes the hash of each word and appends them

at the end of the encrypted text.

Limitations: Unfortunately, Shadow DOM is an e-

volving standard. With the upgrade of W3C standard,

“multiple shadow roots” is no longer supported. The so-

lution provided by ShadowCrypt is not feasible in the

new W3C standard. Hence, to have a proper solution

for this question, we should find an alternative design

that can provide a similar solution for encryption at

Chokepoint (c). In addition to this issue, researchers

also raised concerns about the actual security of some

attacks for Shadow DOM, which makes ShadowCrypt

insecure [21]. The question is whether Shadow DOM

can still be used to build a secure input/output envi-

ronment for web applications and if yes, how.

ShadowCrypt cannot be applied to web application-

s that handle data with a pre-defined length and for-

mat such as Customer Relationship Management (CR-

M) system and Office Automation (OA) system. The

first problem to solve is how to store the encrypted da-

ta in the original database, because ShadowCrypt will

change the data length and format; the second prob-

lem is how to identify ciphertext from HTML codes

with limited storage length. We refer these two prob-

lems as the “ciphertext storage” and “identification”

problem. Our target is to provide a secure solution for
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the encryption in Chokepoint (c) while solving the s-

torage and identification problem such that encrypted

data can still be stored in the original database of the

web application.

Contributions: In this paper, we present Shad-

owFPE, a new solution for user-controlled encrypted

web applications deployed in untrusted clouds. Similar

to ShadowCrypt, ShadowFPE provides a practical solu-

tion for encryption in Chokepoint (c) which is the ideal

location for encrypting sensitive data before the appli-

cation codes (including the client-side codes) can access

it. There are two difficulties that ShadowFPE has over-

come. First, without the multiple shadow roots (depre-

cated in the latest W3C standard), it becomes impos-

sible to make use of Shadow DOM to provide an en-

capsulated secure input/output environment. To tackle

this problem, we finally identified a more robust prop-

erty in DOM (roughly speaking, creating new branch

in DOM tree, thus we refer our method as the “new-

branch” method) to leverage Shadow DOM to obtain a

more long-term and robust solution. Our solution would

still be valid as long as DOM is supported and Shadow

DOM is not deprecated as it does not rely on the low

level details of Shadow DOM (unlike ShadowCrypt).

The security and practicality of ShadowFPE are veri-

fied by case studies on real web applications. The results

show that ShadowFPE is effective as it has low over-

head and requires minimal modification to the existing

applications.

Second, ShadowFPE also solves the “ciphertext s-

torage and identification problem”. Following the idea

in privacy-preserving data publishing (PPDP) [19], Shad-

owFPE requires the cloud service providers (CSPs) to

mark the sensitive data explicitly to provide more con-

fidence to users to purchase their services. ShadowFPE

defines a unified specification named “tag-rule” based

on HTML tags and attributes to mark the sensitive da-

ta and their formats; provides the “tag-based identifica-

tion method” for the user to identify and encrypt/de-

crypt them; and applies format-preserving encryption

(FPE) to solve the ciphertext storage problem. The se-

curity and practicality of ShadowFPE are verified by

case studies on real web applications, e.g., CRM, OA,

Meeting Management System (MMS). The results show

that ShadowFPE has a high usability and is efficiency

with minimal modification overhead (lightweight).

Organization: In this paper, we introduce the back-

ground encrypted web applications and characteristic of

ShadowCrypt in Section 1. Then, we describe the de-

tails of Shadow DOM and ShadowCrypt in Section 2.

In Section 3, we analyze the limitations of state of art

solution. In Section 4, we present a new-branch method

and apply this method to ShadowFPE which present-

ed in Section 5. We also present more case studies in

Section 6 and evaluates ShadowFPE in Section 7. We

draw some conclusion in Section 8.

2 Preliminaries

In this section, we will introduce the background about

Shadow DOM and ShadowCrypt in Section 2.1 and Sec-

tion 2.2. And we will describe the Format-preserving

encryption simply in Section 2.3.

2.1 Shadow DOM

Shadow DOM provides an encapsulation for JavaScript,

CSS, and templating in a web component. It can block

JavaScript code from accessing the shadow tree. It has

been updated from version V0 to V1, and the lastest

W3C Working Draft was published in September 2017.

We summarize the main differences between Shadow

DOM V0 and V1:

1. Shadow root mode. The new mode “closed” is added

in V1. The design goal of the closed mode is to for-

bidden access to Shadow DOM from outside.

2. Multiple shadow roots. It is deprecated in V1 (see

the attack in Section 3.1 for multiple shadow roots).

3. Can be a shadow host. In V0, every element can be

a shadow host; while in V1, only a limited number

of elements are allowed to be shadow hosts.

4. Selectors. In V0, the usage of /deep/ or ::shadow se-

lector can visit Shadow DOM. In V1, these selectors

have been deprecated.

5. Function of creating shadow root. In V1, the new
function of Element.attachShadow is used to create

a shadow root with different modes.

2.2 ShadowCrypt

ShadowCrypt [6] builds the secure input/output envi-

ronment which is isolated from the application DOM

based on shadow DOM V0. It runs as follows.

Initial state. In Figure 2(a) we show an example

with only one input element. From it, we can see the

initial state of DOM before using ShadowCrypt.

Input isolation. The input element in the page will

be replaced with a new input which is isolated from

the page, as shown in Figure 2(b). Then, it captures us-

er’s data from shadow input, encrypts it using the AES-

CCM algorithm, and updates the original input node’s

value with the ciphertext. The final encrypted text will

be added with a prefix such as “=?shadowcrypt” to

identify it as a ciphertext.
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Output isolation. When the encrypted text needs

to be decrypted and rendered, ShadowCyrpt will locate

the text with the prefix of “=?shadowcrypt”, decrypt-

s it, and creates a span element hosting the cleartext

which is shown in Figure 2(c).

P

input

document tree

Document

(a) Initial s-
tate of DOM
without Shad-
owCrypt.

P

input

document tree

Document

hosts

Shadow root
(open)

input

Shadow tree

(b) Initial s-
tate of DOM
with Shad-
owCrypt.

P

span

document tree

Document

hosts

Shadow root
(open)

Shadow tree

clear text

ciphertext

clear text

plainttext

(c) ShadowCrypt presents ci-
phertext. A span element hosts
plaintext.

Fig. 2: The basic procedure of ShadowCrypt.

2.3 Format preserving encryption

Format-preserving encryption (FPE) [7–9, 11, 22] has

been proposed recently to solve the ciphertext storage

problem. The goal of applying FPE is to generate ci-

phertext, which falls in the same domain as that of the

plaintext, thus FPE can ensure that the ciphertext has

the same format as the plaintext while encrypting sen-

sitive information.

Some practical FPE schemes have been proposed

for common domains like integer (e.g., FFSEM [8]) and

character data (e.g., FFX [11]). With the format of

the ciphertext preserved, FPE enables the upgrade of

database or application security in a transparent way,

without changing the database structure and data type-

s. It has been widely used in some integrated solutions

and business products.

3 Limitations of state of art solution

In this section, we point out the reasons why Shad-

owCrypt cannot work after the upgrade of W3C stan-

dard, and discuss the potential attacks and other issues

about it.

Problem 1: ShadowCrypt is not compliant with the

new W3C standard, so there is no solution which can

build a secure input/output environment using Shadow

DOM at Chokepoint (c).

The reason why ShadowCrypt cannot work is due

to the following three facts in the new W3C standard:

Fact 1 Some HTML elements (e.g., input element, video

element) have already included a “user-agent Shad-

ow root”. Take input element as an example, it can

be shown in Figure 3(b).

Fact 2 The HTML elements are forced to host up to

one shadow root, i.e., multiple shadow roots are no

longer supported that makes ShadowCrypt not fea-

sible.

Fact 3 Many HTML elements, such as input, textarea,

etc., cannot be the shadow hosts because these el-

ements have already hosted a default shadow tree

whose root is called “user-agent shadow root” (Fact

1).

As described in Section 2.2, a shadow root will be

added to the input element in ShadowCrypt which is

shown in Figure 3(a). However, the input element has

already included the “user-agent Shadow root” (Fact

1); so, ShadowCrypt would lead to the result which is

illustrated in Figure 3(c). We can see that the input

element in ShadowCrypt would host “multiple shadow

roots”. This is a violation of Fact 2. Moreover, making

input element as a shadow host also violates Fact 3.

Remark. The iframes have been mentioned to build

the secure input/output environment in [21]. However,

He et al. [6] have pointed out that the iframes have

usability limitations, especially when rendering the de-

crypted text.

Problem 2: ShadowCrypt may suffer from some

potential attacks in the old W3C standard.

There are three attacks for ShadowCrypt, in the fol-

lowings, we retrieve these attacks described in [21]:

– Attack 1: “new-ShadowRoot attack”. In V0,

because Shadow DOM allows an element to have

multiple shadow roots, the newest shadow root will

have the ability to access the old shadow root ob-

jects through their olderShadowRoot property.

– Attack 2: “CSS selectors attack”. In V0, two

CSS selectors of /deep/ and ::shadow can “pierce”

the Shadow DOM. They can access the Shadow el-

ements from the outside world. Figure 5 describes

an example of how to launch this attack.

– Attack 3: Hijack attack. In V0, the Element.prototype.

createShadowRoot method can be replaced by the

web application with a version that saves the refer-

ences to the created ShadowRoots, allowing the web
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(c) Reason for InvalidSta-
teError.In latest W3C stan-
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be created on a host which
already hosts an user-agent
shadow tree.

Fig. 3: In latest W3C standard, Shadow root cannot be cre-
ated on a host which already hosts an user-agent shadow tree.

application to access the contents of these shadow

roots.

Problem 3: There is no practical solution to sup-

port both the user-controlled encryption and to preserve

application functionalities for cloud web applications.

The encryption algorithm used in ShadowCrypt will

change the original data format. When the data is en-
crypted by ShadowCrypt, these data cannot be stored

in the original database in its original form. So, Shad-

owCrypt can only be applied to text-based web applica-

tions, like webmail and social networking sites. In de-

tails, the encryption process of ShadowCrypt has the

following two problems:

– It encrypts the plaintext using the AES-CCM al-

gorithm, a traditional block cipher algorithm with

block length of 128 bits, which introduces the prob-

lem of ciphertext storage. The length of the cipher-

text is more than a block size characters, which ex-

ceeds the maximum length of the original data field.

– It attaches a format signature (=?shadowcrypt-) to

identify ciphertext strings in the process of decryp-

tion and an EOF sequence (?=) to denote the end of

ciphertext string. These special patterns for cipher-

text identification also cause changes to the original

format and make it difficult to store the ciphertext

in the original database.

Another problem is that the encryption may cause

some functions of the application not usable. For exam-

ple, the web application may check the validity of the

format of the input, in this case, since ShadowCrypt

cannot preserve the input format after encryption, the

web application may not be used. This is a common

problem of encrypted web application.

4 The new-branch method

In this section, we present the basic idea of a new solu-

tion named “new-branch method” in Section 4.1 and

describe the details of this solution for the isolation

of input data in Section 4.2. Unlike ShadowCrypt, our

method is based on a more robust property in DOM,

rather than the low-level properties in Shadow DOM.

We also analyze the security of this method in Section

4.3.

4.1 Basic idea

To isolate the DOM, we still use Shadow DOM to real-

ize secure input/output environment. Instead of adding

Shadow DOM for the existing text input element, we

create a new HTML element which can be the shad-

ow host and does not cause the multiple shadow root

problem. Besides, in order to disallow any access to a

node in a shadow root from the outside world, we set

the mode of shadow root closed. More specifically, we

create a new branch under the same parent node of

the protected element, i.e., we insert a precedent node

for the protected element. So, we name this method as

“new-branch method”.

It avoids involving Shadow DOM internal imple-

mentation details, therefore it can work properly in all

versions of browsers supporting Shadow DOM.

4.2 The details of our method

As illustrated in Figure 4, there are four steps in this

method as described in the following:

Step 1: Hide the replaced element. We set the style of

the original input element as “display:none”. Since

users will interact with the isolated input environ-

ment, the existence of the original input element will

cause a collision in display.

Step 2: Create shadow host. We create an HTML tag,

<span>, to host the shadow tree. Because in the

latest W3C standard, the shadow tree cannot be

hosted by the original input element, which has al-

ready hosted a user-agent shadow root.
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hosts
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Fig. 4: The steps of “new-branch method”. Step 1: hide the
replaced element; Step 2: create a shadow host; Step 3: insert
into DOM tree; Step 4: create shadow tree.

Step 3: Insert into DOM tree. We insert the newly-

created shadow host into the DOM tree as the prece-

dent node of the original text input element.

Step 4: Create shadow tree. We create a shadow tree

which consists of a new input element replacing the

original one. Secure input requires the isolation of

the application’s DOM from the DOM containing

the sensitive information.

Claim 1 The new-branch method is independent of in-

ternal implementation of Shadow DOM, so that it can

work properly with the upgrade of Shadow DOM.

Proof : ShadowCrypt cannot work with the upgrade

of Shadow DOM, because its design relies on the inter-

nal implementation details of Shadow DOM. However,

the proposed “new-branch method” does not rely on

the low-level details of Shadow DOM. It makes use of

a more robust property in DOM rather than Shadow

DOM. In our method, Shadow DOM is only used for

encapsulation, its internal implementation is transpar-

ent to our method. So, “new-branch method” will run

correctly as long as DOM is supported and Shadow

DOM is not yet deprecated.

4.3 Security proof

Fact 1 The goal of the shadow DOM is to provide func-

tional encapsulation, which is primarily concerned with

establishing functional boundaries in a document tree.

Proof 1 The DOM tree is made up of numerous func-

tional subtrees-one or more DOM nodes which imple-

ment a certain functionality. The goal of the shadow

DOM is to provide functional encapsulation for these

subtrees. This is achieved by keeping functional sub-

trees separate from the document tree (and each other).

This separation of shadow DOM subtrees is known as

the shadow boundary. Javascripts, CSS rules and DOM

queries do not cross the shadow boundary, and thus pro-

vide encapsulation and can be used to build secure in-

put/output environment.

Theorem 1 Secure input/output environment can be

built by the new-branch method if Shadow DOM achieves

the ideal encapsulation.

Proof 2 As an evolving standard, Shadow DOM has

not yet fully achieved the goal of functional encapsula-

tion in the version of V0. It has suffered some attacks.

With the upgrade of Shadow DOM, the encapsulation

has been greatly enhanced. In the version of V1, we can

prove that these attacks have been invalid by experi-

ments.

Against new-ShadowRoot attack. Because “mul-

tiple shadow roots” has been deprecated in Shadow DOM

V1. It is obvious that our “new-branch method” will not

suffer this attack. To verify that, we test it in Chrome55

supporting the new W3C standard. The experiment shows

that it will raise a DOMException.

Against CSS selectors attack. The /deep/ and

::shadow selectors have already been deprecated in Shad-

ow DOM V1. So our proposed method will not suffer

this attack, too.

To verify that, we test on a span element which will

host a shadow tree. We first test the attack on Shadow

DOM V0, as shown in Figure 5, the input value in the

Shadow DOM is stolen successfully. Then, we test the

attack on Shadow DOM V1, as shown in Figure 6, we

couldn’t get anything of the inside of Shadow DOM.

Fig. 5: In V0, “CSS selectors attack”can steal content by
/deep/ or ::shadow selector.

Against Hijack attack. We believe this attack is

impossible. Because browsers protect extension logic by

running the extension code in a separate JavaScript en-

vironment. The application and the browser extension

are not sharing the same JavaScript global prototypes.

So the Hijack attack won’t happen.

To verify that, we write a simple browser extension

to simulate the secure input environment. We create a
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Fig. 6: In V1, “CSS selectors attack” cannot cross the bound-
ary of shadow DOM.

closed shadow tree for the span element. Then, to sim-

ulate a malicious application code, we rewrite the Ele-

ment.prototype.attachShadow function in it. The code

as shown below.

// a p p l i c a t i o n :
<span>Hel lo , wor ld !</ span>
< s c r i p t>
conso l e . l o g ( ” a p p l i c a i t o n JS s t a r t ” ) ;
Element . p r o t o t y p e . at tachShadow = func t i on ( para

) {
conso l e . l o g ( ”ma l i c i ou s f un c t i on e x e cu t i n g ” ) ;
}

conso l e . l o g ( ” a p p l i c a i t o n JS end” )
</ s c r i p t>
// browser e x t en s i on :
var ho s t = document . getElementsByTagName ( ” span”

) [ 0 ] ;
var roo t = hos t . at tachShadow ({mode : ’ c l o s ed ’ } ) ;
var inpu t = document . crea teE lement ( ’ input ’ ) ;
roo t . appendChi ld ( inpu t ) ;

When the Element.prototype.attachShadow function

is redefined to replace the function in extension, the Hi-

jack attack will happen. To make sure that, we set the

extension running at document end which is a param-
eter in manifest file, i.e., the extension code will not

be run until the application code is executed complete-

ly. We also log the execution sequence in the console to

verify that.

If the attack succeeds, the string “malicious function

executing” in the Element.prototype.attachShadow will

be output. But in our experiment, we don’t see it from

the console. This shows that the extension and appli-

cation use different JavaScript global prototypes. As a

result, the Hijack attack won’t happen.

5 Our Solution: ShadowFPE

In this section, we present our ShadowFPE solution.

In particular, we present the basic idea in Section 5.1,

system design in Section 5.2 and tag method in Section

5.3. We also implement our scheme and analyze the

security of ShadowFPE in Section 5.4 and Section 5.5.

5.1 Basic idea

Although ShadowFPE can apply the “new-branch method”

to build the secure input/output environment, we still

have to solve the “ciphertext storage and identification

problem”. As described in Section 2.3, FPE can solve

the ciphertext storage problem. It looks perfect, but in

fact, for a web application, we must solve the problems

including: 1) how to know which inputs should be en-

crypted, 2) how to identify the ciphertext from HTML

codes, 3) how to maximize the support of application

functions, and so on.

For text-based web applications, we can work as

ShadowCrypt. But for other web applications, we on-

ly consider encrypting the primary sensitive data (e.g.,

name, telephone), like that in anonymization method [19]

of privacy-preserving data publishing. For marking the

sensitive data, we require the developers/CSPs (cloud

service providers) to add some identification informa-

tion (e.g., HTML tags and attributes) to the web ap-

plication codes. Meanwhile, we design the identification

method to automatically identify them.

5.2 System Design

ShadowFPE consists of three modules:

– Identifying module. It implements the identification

of sensitive data and its format.

– Core module. It constructs a secure environmen-

t by isolating application DOM and accomplishes

encryption/decryption on sensitive data.

– Key management module. It enables user to select

the key and control his/her privacy information. It

can be implemented as that in the ShadowCrypt.

Notations. Denote Enc (ID, key,m) as the en-

cryption algorithm, in which key is the key for encryp-

tion, ID is the format controlling string for input data,

m denotes the plaintext from the user input. Similar-

ly, denote Dec (ID, key, c) as the decryption process,

where c is the ciphertext and key is the decryption key.

Data flow. We briefly describe the data flow of

ShadowFPE (from user to server and vice versa).

User to Server. Figure 7(a) describes the data flow

from user to server. When the client receives the HTTP

messages (Step 1 ), ShadowFPE will traverse applica-

tion’s DOMs, identify the tagged elements and their

formats within these DOMs (Step 2 ), and then trans-

mit these elements (Step 3 ) and the key (Step 4 ) to

ShadowFPE’s core module. The core module will gener-

ate an isolated input environment, monitor user inputs

and encrypt them.
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Fig. 7: Data flow of ShadowFPE.

User input will only interact with Shadow DOM and

the web application code can only access the encrypt-

ed data. For example, when a user inputs plaintext,

“nankai@gmail.com” (Step 5 ), Shadow DOM in Shad-

owCrypt’s core module will capture it and use the i-

dentifying module to identify its format (email). With

the key received from the key management module,

Shadow DOM encrypts it using a chosen encryption

scheme in crypto library (Step 6 ). Then Shadow DOM

updates the data in application DOM to the encrypt-

ed data, “huxtdg@gmial.com” (Step 7 ). The application

will then send an HTTP request message (Step 8 ). We

emphasize that encryption will not change the data for-

mat.

Server to user. Figure 7(b) describes the data flow

from server to user. After client received the HTTP

message sent by server (Step 1 ), the browser will parse

it. The identifying module in the ShadowFPE will tra-

verse the application DOMs and identify the tagged

ciphertext and its format (Step 2 ), then transmit the

format (Step 3 ), the key (Step 4 ) and the ciphertext

data (Step 5 ) to the core module of ShadowFPE. Fi-

nally, ShadowFPE will decrypt the ciphertext (Step 6 )

and display it (Step 7 ) to the user through an isolated

output environment.

5.3 Tag Method

We define “tag-rule” to mark the sensitive data, and

design “tag-based identification method” to identify the

input data to be encrypted and the output data to be

decrypted.

5.3.1 Tag-rule

The tag-rule is based on the mechanism of HTML tags

and custom attributes. All the current browsers sup-

port them, because the custom attributes only require

appending a prefix, “data-”, when defining such at-

tributes.

Key elements. There are two key elements:

– The attribute named “data-crypt”: In the user-to-

server data flow, we add attribute data-crypt into in-

put elements to mark the sensitive data and its for-

mat. Its value could be one item in {“AES”, “FPE”,

“INT”, “STRING”, “EMAIL”, “DATETIME”}.
– The span tag. In the server-to-user data flow, we

add the tag span and attribute data-crypt to mark

the ciphertext and data type of the sensitive infor-

mation.

Example. The input element, whose HTML code is

<input type=“text” name=“themail”/>, will be changed

to <input type=“text” name=“themail” data-crypt=

“ EMAIL”/>, where the “data-crypt” marks this ele-

ment as a sensitive data and the required encryption

algorithm is FPE for email. The ciphertext, whose val-

ue is <%=themail%>, will be changed to <span data-

crypt=“EMAIL”><%=themail%></span>.

5.3.2 Tag-based identification method

This method is used in the browser side for the identifi-

cation of the input data to be encrypted and the output

data to be decrypted.
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Input data identification. How to identify sen-

sitive data in the data flow from user to server is de-

scribed here in two aspects, elements identification and

formats identification.

Elements identification. ShadowFPE will traverse

each node in application DOMs and each attribute of

input elements (such as input, textarea). It will identi-

fy each input element with data-crypt attribute as an

element to be encrypted.

Formats identification. This identification relies on

the value of data-crypt attribute of that element: (1) if

it is “AES”, the field is not format-sensitive, that is, this

field does not have a specific format to preserve. Shad-

owFPE will encrypt it using the AES algorithm; (2) if

it is one of the items in the set {“INT”, “STRING”,

“DATETIME”, “EMAIL”}, this field is identified as

format-sensitive and will be encrypted by the related

FPE algorithm in the set {FFSEM [8], FFX [11], FPE-

DateTime [10], FFX [8]}; (3) if it is “FPE”, the field is

format-sensitive but the web application did not pro-

vide the concrete format of this field. In this situation,

ShadowFPE will execute an automatic identification for

this field.

To describe the above process, we use an array encEle-

ments to store the elements of the field to be encrypted,

and use an array encFormat to store the corresponding

format for each field that needs to be encrypted. The

function IdentifyAutoFormat() realizes the automatic

identification. The pseudo-code is shown in Algorithm

1.

Algorithm 1 input element identification

1: encElements← [ ], encFormats← [ ], i← 0
2: for eachElement ∈ document.getElementByTagName(‘input′)

do
3: if eachElement.getAttribute() 6= null then
4: if eachElement.getAttribute() = “FPE′′ then
5: encElements[i]← eachElement
6: encFormats[i] ←

IdentifyAutoFormat(eachElement)
7: else
8: encElements[i]← eachElements
9: encFormats[i] ← eachElement.getAttribute(“data −

crypt′′)
10: end if
11: i++
12: end if
13: end for

Output data identification. How to identify the

sensitive data in the data flow from server to user con-

sists of two aspects, elements identification and formats

identification.

Elements identification. ShadowFPE will traverse

each node and find out elements with the tag span, in

which the text will be decrypted and later displayed.

Formats identification. Like that in “input data i-

dentification”, it identifies the data format through the

value of data-crypt attribute.

Algorithm 2 shows the process code, where decEle-

ments is adopted to store the elements of the fields to

be decrypted.

Algorithm 2 output element identification

1: decElements← [ ], decFormats← [ ], i← 0
2: for eachElement ∈ document.getElementByTagName(‘span′)

do
3: if eachElement.getAttribute(“data− crypt′′) 6= null then
4: if eachElement.getAttribute(“data − crypt′′) = “FPE′′

then
5: decElements[i]← eachElement
6: decFormats[i] ←

IdentifyAutoFormat(eachElement)
7: else
8: decElements[i]← eachElement
9: decFormats[i] ← eachElement.getAttribute(“data −

crypt′′)
10: end if
11: i++
12: end if
13: end for

5.4 Implementation

Input isolation. To isolate the plaintext, ShadowFPE

firstly obtains input elements through the “data-crypt”

attribute. Then, it utilizes the “new-branch method” to

isolate them. Concretely, it creates a new shadow host

with tag <span> instead of the original input element,

inserts the new one, and sets the original one display

none. Finally, it captures the plaintext from the new

input element, encrypts it according to the marked data
format, and updates the ciphertext to the original one.

This process is described as follows.

f o r ( var i =0; i<encElements . l ength ; i++){
var oldInput=encElements [ i ] ;
o ldInput . s e tAt t r i bu t e ( ” s t y l e ” , ” d i sp l ay : none” )

;
var mySpan=document . createElement ( ”span” ) ;
o ldInput . parentNode . i n s e r t B e f o r e (mySpan ,

o ldInput ) ;
var host=mySpan ;
var root=host . attachShadow ({mode : ’ c losed ’} ) ;
var input=document . createElement ( ” input ” ) ;
input . s e tAt t r i bu t e ( ”data−format ” , encFormats [ i

] ) ;
root . appendChild ( input ) ;
input . addEventListener ( ”keyup” , func t i on (event

) {
var r e t=Enc( t h i s . g e tAt t r ibute ( ”data−

format ” ) , key , t h i s . value ) ;
t h i s . parentNode . host . n ex tS ib l i ng .

s e tAt t r i bu t e ( ” value ” , r e t ) ; }) ;
}

Output isolation. For “output isolation”, Shad-

owFPE selects a proper algorithm according to the i-

dentified ciphertext and its format, decrypts the data,
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and displays it to the user through the isolated Shadow

DOM.

To display the plaintext after decryption, the core

module generates a shadow tree on the host of span tag

and puts the sensitive data in the newly-created shadow

tree. The following code shows this whole process.

f o r ( var i =0; i<decElements . l ength ; i++){
var host=decElements [ i ] ;
var r e t= DEC( decFormats [ i ] , key , host . innerText ) ;
var root=host . attachShadow ({mode : ’ c losed ’} ) ;
var retNode=document . createTextNode ( r e t ) ;
root . appendChild ( retNode ) ;
}

5.5 Security Analysis

For a text-based web application, threat model and se-

curity of ShadowFPE are both as same as ShadowCryp-

t. If the input/output environment is secure, ShadowF-

PE would be secure against data leakages on cloud-

s, network, and clients. We can prove it by the fol-

lowing reasons: 1) the “new-branch method” has been

proved that it can defend the proposed attacks in Shad-

ow DOM V1 in Section 4.3; 2) the FPE algorithms are

adopted the famous ones that have provable security;

3) the encryption/decryption operations are executed

in the client side, and the key is managed by users.

For cloud web applications, we must consider other

attacks caused by the new feature, i.e., the application

codes are allowed to be modified by clouds. In this case,

attacker may add wrong tags or dishonestly mark the

sensitive data, to launch attacks. Because ShadowFPE

doesn’t reply for wrong tags, and thus the latter be-

comes the biggest threat of ShadowFPE, in which the

malicious cloud can obtain the plaintext by dishonest-

ly marking the sensitive data. In fact, the ideal threat

model for CSPs should be “honest but curious”, be-

cause dishonest will make them lose customers. Even

if not, there are some cryptographic methods that can

help us to solve this attack. Typically, ShadowFPE can

require the signature of the modified pages and their

elements which need to be marked by the Certification

Authority (CA).

6 Case Studies

ShadowFPE has strong applicability and it can be wide-

ly used in a variety of applications. In this section, we

wil l show how to apply ShadowFPE in various kind-

s of web applications, not limited to text-based web

applications. Since ShadowFPE applies FPE and al-

lows customers to design their own identification rules,

ShadowFPE is found to be applicable in many typical

Table 1: List for case studies. We modified some applica-
tions to protect some sensitive fields using ShadowFPE.

Product System type Encryption fields

X2CRM CRM Most sensitive fields

Dolibarr ERP
Sensitive fields

related to cooperations

Fengoffice OA
Sensitive fields
about OA tasks

OpenConf Meeting System
Author information

in a submission

open-source web applications, such as CRM, OA, CMS

and email systems, listed in Table 1.

Among them, we demonstrate how to modify a pop-

ular and open-source CRM system, X2CRM, using Shad-

owFPE and later conduct an analytical study of the

modification. At the time of our experiment, 6.0.1 is

the latest version of X2CRM. To protect user priva-

cy, we mark sensitive fields according to the tag-rule

of ShadowFPE, including title, phone, website, email,

address, employees, and so on. To preserve the “fuzzy

query” function in the original web application, we did

not mark the “name” field as sensitive.

The screenshot of “create account” page without

ShadowFPE extension is shown in Figure 8(a). And the

screenshot of “create account” page after using Shad-

owFPE extension is shown in Figure 8(b). To distin-

guish between these two pages, we use dashed border

lines for input field and make it a little shorter than

the original input field (we can maintain the same style

in practical application). Users’ privacy information are

all collected by secure input elements with dashed bor-

der lines, and will be later encrypted by ShadowFPE.

To verify the effectiveness of sensitive data protec-

tion, we opened the “account detail” page of the user

we had just created in the firefox browser without our

ShadowFPE extension. All the sensitive data which is

shown in Figure 8(a) is displayed as ciphertext with

their original format preserved: data in employees, phone,

and postal cede field are integers of the same length, da-

ta in website field is still in the format of website and so

on. Other fields that we did not mark as sensitive infor-

mation are still shown in plaintexts. Figure 8(b) shows

how the Google Chrome browser with ShadowFPE ex-

tension displays the information of Alice. As we can see,

Alice’s information is displayed in plaintext. Therefore,

we prove that ShadowFPE prevents user privacy from

adversaries but works transparently from the perspec-

tive of users.

Because we chose not to encrypt the data in name

and revenue field, the primary functionality of the ap-

plication was preserved: “fuzzy query” on the name field

and statistical analysis on the revenue field are still sup-
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(a) The X2CRM “account details” page in the browser
without ShadowFPE extension. It shows the ciphertext
of sensitive fields.

(b) The X2CRM “account details” page in the browser
with ShadowFPE extension. It displays the plaintext in-
stead of ciphertext in sensitive fields.

Fig. 8: The screenshot of “create accoun” page without and with ShadowFPE extension

ported, which are the basis of X2CRM’s distinguishing

functionalities.

7 Evaluation

In this section, we evaluate the performance of Shad-

owFPE and the overhead of this modification in Section

7.1. The results show that ShadowFPE is practical as it

has lower overhead compare to the original application.

Additionally, we evaluate the modification cost for the

applicability in existing web applications in Section 7.2.

For the consideration of efficiency and practicality

in ShadowFPE, our evaluation focuses on two aspect-

s: (1) the response time of the browser which consists

of the time taken to create the shadow input, the time

taken to perform the encryption and decryption algo-

rithm, the performance loss in practice; (2) application

modification overhead. We evaluate the time required
for the modification for an existing web application in

cloud and verify that ShadowFPE is of practical use.

7.1 Performance evaluation

We conducted the test on an Intel Core i7-6700 3.41GHz

x 8 with 16GB of RAM.

Cost of creating secure input environment.

We first test the additional cost of using ShadowFPE

to create a secure input environment. In this test, we

established web pages with 1-1000 input elements, and

the result is shown in Figure 9. Exactly as it illustrates,

the time cost for generating shadow input is in linear

relationship with the number of input fields. The more

the number of input elements, the more the time cost

is. Because the increase of the number of elements will

cause an increase in the time of operations. The fig-

ure shows that it takes less than 10ms for creating 100

shadow input elements, and the cost of creating 1000

shadow input is approximately 60ms, which is imper-

ceptible to users. For a normal web page, the number of

input elements is far fewer than 1000, even fewer than

100. Thus, the time cost in this step can be ignored for

user experience.

Time cost of encryption. ShadowFPE listens on

the keystroke events and encrypts the input data. To

estimate the effect of different encryption schemes, we

choose three kinds of encryption schemes: (1) for inte-

gers of length from 1 to 30, we encrypted them with

FFSEM, a kind of FPE algorithm; (2) for strings of

length from 1 to 50, we choose another kind of FPE al-

gorithm, FFX; (3) for strings of length from 1 to 1000,

we adopt AES algorithm. That is because the length

of the format sensitive fields in reality will not be too

long, and integer and string are the two general types

of formats that most applications will distinguish. The

long data usually preserves certain format, thus we use

AES to accelerate the process of encryption.

The result of the test is illustrated in Figure 11 and

12. We can see that: (1) when we use FFSEM to encrypt

integers of length within 30, the time cost is between

1ms and 2ms; (2) the time cost for encryption strings of

length within 50 by using FFX is between 1ms and 2ms.

As the length of sting increases, the time cost also in-

creases with a linear blow up; (3) the time cost of using

AES is the least among the time cost of using three en-

cryption schemes. The time cost approaches 1ms when

it encrypts strings of 500 characters. The results are

consistent with our expectation that AES is the fastest

while FPE schemes, although slower, can preserve data

formats for shorter data values.

Overall speaking, the performance is reasonably fast.

The time cost for the encryption of format sensitive

fields is only within 3ms. The time cost for encrypting

long text is similar to the time cost in ShadowCrypt

that also adopts AES. We can conclude that ShadowF-

PE is practical.
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Fig. 9: Time cost for ShadowFPE to cre-
ate shadow input.
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Fig. 10: Time cost for ShadowFPE to de-
crypt messages on a page.
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Fig. 11: Time cost for ShadowFPE to en-
crypt message in different formats by FF-
SEM and AES.
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Fig. 12: Time cost for ShadowFPE to en-
crypt message in different formats by FFX
and AES.
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Fig. 14: Time cost to display the encrypt-
ed web pages when using ShadowFPE or
not.

Time cost of decryption. To measure the time

cost for decryption, we established web pages includ-

ing 1-1000 ciphertext fields. Each page contains vari-

ous types of sensitive data, including integers, mobile

numbers, email addresses, ID numbers, normal strings.
And encryption schemes include the corresponding F-

PE algorithms and AES. The length of each field is set

randomly, aiming at simulating the pages in reality for

the evaluation of the average time cost.

As illustrated in Figure 10, the time cost increases

with the increase in the number of fields to be decrypt-

ed. Though when there are approximately 800 fields to

be decrypted in one page, the time cost reaches 1 sec-

ond, this situation will hardly happen in reality. Even

for the CRM system that has many sensitive data, the

number of sensitive fields within a web page is normally

fewer than 50, and the number is much smaller in oth-

er web applications. Thus, users usually cannot realize

this change in real applications.

Performance comparison. We also measure the

performance loss between ShadowFPE and the origi-

nal application. We choose two pages of X2CRM to do

the test. One of them is a page for accounts creation

(http://website/X2CRM-master/x2engine/index.php/

accounts/create), the other is for contacts creation (../

index.php/contacts/create). The former has 19 input el-

ements of which 9 is sensitive, the latter has 18 input

elements of which 12 is sensitive. These sensitive field-

s contain mobile numbers, email address, website ad-

dress, etc.

As shown in Figure 13 and 14, we can see that: (1)

when loading web pages, ShadowFPE only needs a few

milliseconds to create the shadow input for the sen-

sitive fields; (2) when displaying the encrypted pages,

ShadowFPE may take tens of milliseconds to decrypt

the sensitive information. So, ShadowFPE fulfills the

requirements of practical uses.

7.2 Modification cost evaluation

ShadowFPE requires minimal code rewriting in existing

web applications and we evaluate the overhead of this

modification. We present primary data in our modifica-

tion of some applications mentioned in Section 6 (Ta-

ble 2), including code quantity, the degree of knowledge

(the range is from 0 to 1, and 1 identifies the developer

is extremely familiar with the application code), num-

ber of developers, the time spent on code reading, the
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Table 2: Modification overhead of some applications.

X2CRM Dolibarr fengoffice OpenConf
Code quantity

(MB)
84.3 31.1 44.3 2.55

Degree
of knowledge

0.3 0.3 0.4 0.3

Number of
modification staffs

1 2 2 1

Time spent
on code reading

(h)
5.5 2 1.5 1.5

Time spent
on modifying

(h)
1 0.5 0.5 0.5

Quantity
of code changes

(KB)
2.48 0.89 1.13 1.59

time spent on modifying, and the overhaul of the source

code.

8 Conclusions

We present ShadowFPE, a solution for user-controlled

encrypted web applications. In contrast to previous ap-

proaches, ShadowFPE not only preserves the web appli-

cations’ functionality but also does not trust any part

of web applications based on clouds. ShadowFPE only

requires applications to do tiny modification to provide

secure input/output operations through a browser ex-

tension. ShadowFPE applies format preserving encryp-

tion (FPE) to encrypt sensitive data, thus will not vio-

lates the format of database fields. ShadowFPE can be

widely applied in most kinds of web applications based

on clouds. We do experiments on some applications and

verify the high usability of ShadowFPE.

Like ShadowCrypt, ShadowFPE does not address
how to resist XSS attack. But XSS vulnerability can be

avoided through strengthening ShadowFPE. Through

censoring user input and filtering the harmful ones,

ShadowFPE can defend against XSS attack. This is

what we will focus on in our future work.
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