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Abstract
Inspired by Fisher’s geometric approach to study beneficial mutations, we analyse probabil-
ities of beneficial mutation and crossover recombination of strings in a general Hamming
space with arbitrary finite alphabet. Mutations and recombinations that reduce the distance
to an optimum are considered as beneficial. Geometric and combinatorial analysis is used to
derive closed-form expressions for transition probabilities between spheres around an opti-
mum giving a complete description of Markov evolution of distances from an optimum over
multiple generations. This paves the way for optimization of parameters of mutation and
recombination operators. Here we derive optimality conditions for mutation and recombi-
nation radii maximizing the probabilities of mutation and crossover into the optimum. The
analysis highlights important differences between these evolutionary operators. While muta-
tion can potentially reach any part of the search space, the probability of beneficial mutation
decreases with distance to an optimum, and the optimal mutation radius or rate should also
decrease resulting in a slow-down of evolution near the optimum. Crossover recombination,
on the other hand, acts in a subspace of the search space defined by the current population
of strings. However, probabilities of beneficial and deleterious crossover are balanced, and
their characteristics, such as variance, are translation invariant in a Hamming space, suggest-
ing that recombination may complement mutation and boost the rate of evolution near the
optimum.

Keywords Mutation · Crossover · Recombination · Evolutionary algorithm · Optimal
parameter control
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Notation
N the set of natural numbers {1, 2, 3, . . .}
R the field of real numbers
l ∈ N ‘length’ of tuples or strings
α ∈ N size of a finite alphabet
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{1, . . . , α}l the set of all αl strings of length l over alphabet of size α

R
l l-dimensional real vector space

dE Euclidean metric on Rl

dH or d Hamming metric on {1, . . . , α}l
Hl

α Hamming space — set {1, . . . , α}l with the Hamming metric
x, y, z points in Hl

α , which are l-tuples or strings x = (x1, . . . , xl)
i , j positions in strings, such as x = (x1, . . . , xi , x j , . . . , xl)
� top or greatest string in Hl

α with respect to some preference relation � on Hl
α

k, m, n values of Hamming distance from �, such as d(�, x) = n
r mutation radius d(x, y) = r in the context of mutation or recombination radius

in the context of recombination (the number of letters substituted)
h Hamming distance d(x, y) = h between two parent strings in crossover recom-

bination and referred to as recombination capacity
S(x, r) the sphere of radius r around x {y : d(x, y) = r}
B(x, r) the closed ball of radius r around x {y : d(x, y) ≤ r}
μ mutation rate
ν recombination rate
P{·} probability measure
P(n) probability mass function equal to P{d(�, x) = n}
EP {n} the expected value of random variable with respect to measure P
σ 2
P {n} the variance of random variable with respect to measure P

1 Introduction

Natural evolution can be viewed as a search for an optimal genotype � (top) in the space
{1, . . . , α}l of all genetic codes of finite alphabet {1, . . . , α} of size α ∈ N and length l ∈ N.
Optimality can be defined by some fitness function f : {1, . . . , α}l → R maximized at
�. Some mathematicians, however, simplified the analysis by replacing fitness f (x) of a
genotype with its distance d(�, x) from �. For example, Roland Fisher [1] used Euclidean
spaceRl of l traits to represent species by vectors of l traits and Euclidean distance dE (�, x)
from an optimum to represent (negative) fitness of x . This simplification allowed him to
analyse the probability of beneficial mutations, which in this geometric model meant that
mutation of x resulted in an offspring y closer to the optimum: dE (�, y) ≤ dE (�, x). Fisher’s
famous result was that beneficial mutations are always more rare than deleterious, and that
the only way to equalize their chances is to minimize the mutation radius dE (x, y) = r . This
result follows from the geometry of Euclidean space, where every closed ball B(�, n) =
{x ∈ R

l : dE (�, x) ≤ n} around� is compact (and has finite volume), while its complement
is always unbounded. Thus, a random mutation of x with dE (�, x) = n in all directions
by radius d(x, y) = r should more likely end outside the ball B(�, n) and further from the
optimum resulting in a deleterious mutation.

The discovery of DNA and RNA molecules lead to the realization that mutations occur
on the level of genetic codes, which are better represented as strings x = (x1, . . . , xl) of
length l ∈ N over some finite alphabet {1, . . . , α} � xi . Thus, Fisher’s theory of beneficial
mutations had to be reconsidered for spaces of strings with alphabets of arbitrary size α ∈ N

and variable lengths l ∈ N [2–5]. Furthermore, this geometric approach (i.e. replacing fitness
with distance) had limited appeal for practical applications, because distances to an optimum
are usually not known. However, the values f (x) of a fitness function can often provide some
information about the distance d(�, x), and the correlation between fitness and distance has
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been discussed in the literature, for example, as ameasure of problem difficulty [6, 7]. Various
notions of monotonicity of fitness landscapes have been defined and proven to hold in a broad
class of landscapes if they are continuous at least at the optimum � (see Theorem 1 in [8]).
While it is always possible to construct counter examples, fitness landscapes in real-world
applications or biology often exhibit some forms of monotonicity around optimum, as was
demonstrated in [8] for 115 complete landscapes of transcription factor bindings [9].

The generalization of Fisher’s geometricmodel of beneficial mutations to spaces of strings
with alphabets of arbitrary sizeα ∈ Nwas used to derive several optimalmutation rate control
functions [2–5]. They showed that optimalmutation rates should have a decreasing relation to
fitness inmonotonic fitness landscapes [8]. These theoretical predictions lead to the discovery
ofmutation rates plasticity first in e. coli [10] and then in othermicrobes and potentially across
all domains of life [11]. The role of quorum sensing in this phenomenon and the relation of
population density (as a fitness proxy) and stress to mutation rate [12] suggest a broad scope
for applications in many areas including antimicrobial resistance (AMR). Another potential
area of applications of this geometric approach is operational research, where many nature-
inspired algorithms [13] are used to solve complex combinatorial optimization problems.

Evolutionary algorithms, such as genetic algorithms (GA), encode candidate solutions by
finite length strings x = (x1, . . . , xl) with letters from a finite alphabet xi ∈ {1, . . . , α},
and operators of selection, mutation and recombination are applied iteratively to search
the space {1, . . . , α}l [14]. Mutation is a random substitution of some letters in the parent
string by any of the α − 1 letters from the alphabet. Recombination, on the other hand, is
a substitution of some letters in one parent string by the letters from another string (e.g. in
the corresponding positions for crossover recombination). Thus, mutation searches across
the entire space {1, . . . , α}l , while recombination can only search in a subspace defined by
the current population. However, recombination of different strings makes some directions
of the search more likely (i.e. a kind of pseudo-gradient).

Many heuristics have been identified to improve the search efficiency by finding optimal
settings or optimal controls of certain parameters, such as the mutation rate. In particular,
one popular heuristic is to set the mutation rate to μ = 1/l, where l is the string length [15].
Other works showed the advantage of using a variable mutation rate that may depend on
time or fitness of individuals [14, 16–21]. Many of these works considered only binary codes
(α = 2), because their combinatorics is more tractable. More recent studies in the theory of
evolutionary algorithms have considered arbitrary finite alphabets and self-adjustingmutation
rates [22–24].

Different heuristic recombination operators have also been employed, such as one-point
crossover or a uniform crossover operators, and its important role in maintaining diversity
has been recognized [25, 26]. While there are many other types of recombination operators
considered in the literature, includingmixtures of codes frommore than two parents [27], this
paper will only consider crossover between two parent strings. Even in this basic case, how-
ever, combinatorial analysis of crossover is more challenging than that for mutation, because
it involves more points and more parameters. Many studies have considered recombination
only for binary codes [18, 28–32].

The analysis of evolutionary operators for codes with alphabets of size α > 2 should
have a broader scope of applications not only in the context of DNA or RNA molecules with
α = 4, but also for larger alphabets, such as α = 22 for the number of canonical amino
acids. In addition, some recombination operators substitute entire substrings of length r (e.g.
r = �l/2� in one-point crossover). Therefore, recombination can be considered acting on the
space of strings {1, . . . , αr }l/r (i.e. alphabet of size αr ).
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This work develops a geometric approach to evolution of strings in Hamming spaces
extending it from mutation to crossover recombination. In the next section, we start by
reviewing some of the basic properties of a Hamming space and formulate the problem of
finding the probability of mutation onto a sphere of a given radius. Its closed-form solution
is given in Theorem 1, which has been previously presented in [2–5, 8]. These results about
mutation are included here not only for completeness, but also because they are used in the
analysis of recombination in Section 3, and in particular Lemma 2 for intersection of spheres.
We also derive new formulae for the conditional expected value and variance of Hamming
distance after mutation. In Section 3, we formulate analogous problem for probability of
crossover recombination onto a sphere in a Hamming space, and then derive closed-form
solution in Theorem 2. As with mutation, we also derive new formulae for the expected value
and variance of distance after recombination. We conclude each section by analysing the
effects of parameters on probabilities of beneficial mutation and recombination and deriving
optimality conditions for mutation and crossover recombination into optimum. We discuss
how our results open new possibilities for a long-term analysis and optimization of mutation
and recombination operators.

2 Mutation

2.1 Mutation in a Hamming space

Consider the space {1, . . . , α}l of strings (or codes) of length l ∈ N and finite alphabet of
size α ∈ N, and let us equip it with the Hamming metric counting the number of different
letters:

d(x, y) = |{i ∈ {1, . . . , l} : xi 	= yi }| =
l∑

i=1

(1 − δxi yi ) , δxi yi =
{
1 ifxi = yi
0 otherwise

. (1)

This metric space is referred to as Hamming space and denoted by Hl
α . The definition

of Hamming metric (1) as the sum of elementary distances 1 − δxi y j leads to the following
useful result.

Lemma 1 (Mean and variance of Hamming distance) Let Hl
α be a Hamming space, and

let P : 2Hl
α×Hl

α → [0, 1] be a joint probability distribution. Then the expected value and
variance of the Hamming distance d(x, y) between pairs of strings x, y ∈ Hl

α are

EP {d(x, y)} = l〈Pi 〉 , (2)

σ 2
P {d(x, y)} = l〈Pi 〉 + l(l − 1)〈Pi j 〉 − (l〈Pi 〉)2 , (3)

where

〈Pi 〉 := 1

l

l∑

i=1

EP {1 − δxi yi } = P{xi 	= yi } ,

〈Pi j 〉 := 1

l(l − 1)

l∑

i=1

l∑

j=1
j 	=i

EP {(1 − δxi yi )(1 − δx j y j )} = P{xi 	= yi ∧ x j 	= y j | i 	= j} .
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are respectively the average probability of non-identical letters at positions i ∈ {1, . . . , l}
and the average joint probability of non-identical letters at two different positions i and j 	= i
under the distribution P.

See Appendix A.1 for the proof. The average probabilities 〈Pi 〉 := P{xi 	= yi } and
〈Pi j 〉 := P{xi 	= yi ∧ x j 	= y j | i 	= j} can often be estimated from additional information
about distances of strings x and y. For example, assume a joint distribution P(x, y) such
that d(x, y) = n for all pairs of strings such that P(x, y) > 0 (i.e. exactly n letters xi 	= yi ).
Then 〈Pi 〉 = n/l and 〈Pi j 〉 = (n/l)[(n−1)/(l −1)]. Substituting these probabilities into (2)
and (3) gives the desired result EP {d(x, y)} = n and σ 2

P {d(x, y)} = 0. More interesting
and useful formulae will be obtained in Proposition 1 for mutation and Proposition 5 for
crossover.

The geometry ofHamming space is different from that of the Euclidean spaceRl employed
by Fisher [33]. In particular, Hl

α is finite, has finite diameter l, and every point x ∈ Hl
α has

(α − 1)l diametric opposite points ¬x (i.e. such that d(x,¬x) = l). The number of elements
in a sphere S(�, n) := {x ∈ Hl

α : d(�, x) = n} of radius n around � is

|S(�, n)| = (α − 1)n
(
l

n

)
.

The number of elements in a closed ball B(�, n) := {x ∈ Hl
α : d(�, x) ≤ n} is the sum∑n

k=0 |S(�, k)| for all the spheres it contains. The complement Hl
α \ B(�, n) is the union

of all balls B(¬�, l − n) around (α − 1)l diametric opposite points ¬� (see [33] for details
and many other properties of Hamming space). The number of elements in the complement
Hl

α \ B(�, n) is the sum
∑l

k=l−n |S(�, k)|, and it may contain fewer elements than the ball
itself, unlike in the Euclidean space.

The ‘equator’ of a Hamming space is the radius equal to �l(1 − 1/α)� (here �·� denotes
the nearest integer), which corresponds to the median of the binomial distribution P(n; l, p)
with parameter p = 1 − 1/α. Indeed, under a uniform distribution P0(x) = α−l of strings
x ∈ Hl

α , the probability P0(n) of distances d(�, x) = n from � (or from any other point) is

P0(x) = 1

αl
⇒ P0(n) := P0{x ∈ S(�, n)} = |S(x, n)|

αl
= (α − 1)n

αl

(
l

n

)
,

which can be written as the binomial distribution P0(n) = ( l
n

)
(1 − 1/α)n(1/α)l−n . Its

expected value and variance are

EP0{n} = l(1 − 1/α) , σ 2
P0(n) = l(1 − 1/α)(1/α) ,

which can also be obtained using formulae (2) and (3) with 〈Pi 〉 = 1 − 1/α and 〈Pi j 〉 =
(1 − 1/α)2. The median is the nearest integer of the above expected value. For alphabets of
size α > 2 the distribution of distances is skewed towards the end of the range [0, l].

Asexual reproduction of species corresponds to a transformation x �→ y of their genetic
codes due to a random substitution of r ∈ [0, l] letters — a process which we shall generally
refer to as mutation. The resulting distance d(x, y) = r from the parent string in this context
is referred to as themutation radius shown on Fig. 1. If distance d(�, ·) from the optimum�
is taken as a model of (negative) fitness, then beneficial mutation is a transition from sphere
S(�, n) � x onto sphere S(�,m) � y of a smaller radius m < n, as shown on Fig. 1.
Mutation is neutral if m = n, and deleterious if m > n.
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Fig. 1 Mutation of string x ∈ S(�, n) into y ∈ S(�,m) by substitution of r = d(x, y) letters. The number
of strings in the intersection S(�,m) ∩ S(x, r) defines the geometric probability P(m | n, r) (9)

Example 1 (Mutation) Let � = (AAAAA) ∈ H5
3 and consider string x = (BBBAA)

mutating into y = (BACBA) by a substitution of the second, third and fourth letters:

� = (AAAAA)

n=3 m=3

x = (BBBAA)
r=r++r0+r−=3

(BA
r+
C
r0
B
r−
A) = y

Thus, the mutation radius is d(x, y) = 3, and the mutation is neutral, because d(�, x) =
d(�, y) = 3. Notice that there was r+ = 1 beneficial, r0 = 1 neutral and r− = 1 deleterious
substitution. A substitution of three letters in x = (BBBAA) may also result in string z =
(BAACA), which is closer to the optimum, d(�, z) = 2 (i.e. beneficial mutation).

Henceforth we shall denote by r+, r− and r0 the numbers of beneficial, deleterious and
neutral substitutions respectively. These numbers add up to the mutation radius r = d(x, y),
while the difference r+ − r− is equal to the difference n − m of distances:

r+ + r− + r0 = r , (4)

r+ − r− = n − m . (5)

If string x ∈ S(�, n) mutates into y ∈ S(�,m), then the range of the mutation radius is
defined by the triangle inequalities:

|n − m| ≤ r ≤ n + m

At the extreme values r = |n−m| or r = n+m of themutation radius, there are no neutral
substitutions. Indeed, for the maximum value r = n+m there are exactly r+ = n = d(�, x)
beneficial and r− = m = d(�, y) deleterious substitutions, so that r0 = r − r+ − r− = 0.
For the minimum value r = |n − m| there are r+ = max{0, n − m} beneficial and r− =
max{0,m − n} deleterious substitutions. Then (4) and r = |n − m| = max{n − m,m − n}
imply r0 = 0. In both extreme cases we also have r− = r − r+ and r+ = 1

2 (r + n − m) (if
the latter is integer). Clearly, neutral substitutions are impossible for binary strings (α = 2).

2.2 Evolutionary dynamics under mutation

A random mutation x �→ y corresponds to some transition probability P(y | x), where x is
the ‘parent’, and y is its ‘offspring’, and it induces a transformation of distribution Pt (x) of
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the parent codes into the distribution Pt+1(y) of the offspring codes:

Pt+1(y) =
∑

x∈Hl
α

P(y | x) Pt (x) .

The corresponding distance distributions Pt (n) := Pt {x ∈ S(�, n)} and Pt+1(m) :=
Pt+1{y ∈ S(�,m)} are transformed as well:

Pt+1(m) =
l∑

n=0

P(m | n) Pt (n) .

Here, P(m | n) is the transition probability between spheres around � due to mutation:

P(m | n) := P{y ∈ S(�,m) | x ∈ S(�, n)} .

If P(m | n) is time invariant, then the linear operator

M(·) =
l∑

n=0

P(m | n) (·) (6)

acting on distributions Pt (n) of distances d(�, x) = n ∈ [0, l] generates the entire evolution
{Pt }t≥0 due to mutation as Pt+s = Ms Pt . This can be used in simulations to analyse the
effects of mutation and adaptation over several generations.

The transition probability P(m | n) can be factorized in the following way:

P(m | n) =
l∑

r=0

P(m | n, r) P(r | n)︸ ︷︷ ︸
Mutation

, (7)

where P(r | n) := P{y ∈ S(x, r) | x ∈ S(�, n)} is the probability of mutation radius
r ∈ [0, l] conditioned on distance n = d(�, x). This probability can be determined from the
mutation operator.

Example 2 (Point mutation) In a simple point mutation, each letter xi is substituted indepen-
dentlywith probabilityμ ∈ [0, 1] called themutation rate (i.e.μ is fixed for all i ∈ {1, . . . , l}).
Each letter xi canbe substituted to anyof theα−1 letters yi with uniformprobability 1/(α−1).
In this case, the probability that r ∈ [0, l] letters are substituted has binomial distribution:

Pμ(r | n) =
(
l

r

)
μr (n)[1 − μ(n)]l−r . (8)

Note that the mutation rate μ may depend on the distance d(�, x) = n ∈ [0, l] of the
parent string from the optimum. The mutation operator (6) in this case is parameterized by
the mutation rate control function μ(n):

Mμ(n)(·) =
l∑

n=0

[
l∑

r=0

P(m | n, r)Pμ(r | n)

]
(·) .

2.3 Geometric probability of mutation onto a sphere

The probability P(m | n, r) in factorization (7) is independent of the mutation operator, and
it represents a purely geometric problem depicted on Fig. 1:

P(m | n, r) := P{y ∈ S(�,m) | x ∈ S(�, n), d(x, y) = r} . (9)
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Fisher considered this geometric probability in Euclidean space Rl [1]. For a Hamming
spaceHl

α , this problem was considered in [2–5, 8], and here we review its solution, because
it will be useful for the analysis of recombination in Section 3. One can see from Fig. 1 that
probability (9) depends on the number of strings in the intersection of spheres S(�,m) and
S(x, r).

Lemma 2 (Intersection of spheres [2–5, 8]) The number of elements in the intersection
S(�,m) ∩ S(x, r) of spheres around points �, x ∈ Hl

α with d(�, x) = n is

∣∣∣S(�,m) ∩ S(x, r)
∣∣∣
d(�,x)=n

=
r∑

r+=0

(α − 2)r0
(
n − r+
r0

)
(α − 1)r−

(
l − n

r−

)(
n

r+

)
, (10)

where r+ ∈ [0, r ], and indices r− ≥ 0, r0 ≥ 0 satisfy the equations:

r− = r+ − (n − m) , r0 = r − 2r+ + (n − m) .

Distances n = d(�, x), m = d(�, y) and r = d(x, y) must satisfy the triangle inequali-
ties:

|n − r | ≤ m ≤ n + r .

Otherwise, the number is zero.

See Appendix A.2 for the proof.

Remark 1 The summation in (10) is shown across all r+ ∈ [0, r ], but it is important to check
also that r− = r+ − (n −m) ≥ 0 and r0 = r − 2r+ + (n −m) ≥ 0. The triangle inequalities
|n−m| ≤ r ≤ n+m imply the following bounds max{0, n−m} ≤ r+ ≤ 1

2 (r +n−m) ≤ r ,
which can be used for a more efficient implementation.

Formula (10) for the binary case α = 2 was previously analysed in [19] (see also [14,
28]). The solution for arbitrary alphabets was first given in [2] (see also [3–5]). We now have
all information required to find probability (9).

Theorem 1 (Geometric probability of mutation onto a sphere [2–5]) The probability P(m |
n, r) that a substitution of r ∈ [0, l] letters in string x ∈ S(�, n) ⊂ Hl

α results in string
y ∈ S(�,m) is

P(m | n, r) =

r∑
r+=0

(α − 2)r0
(n−r+

r0

)
(α − 1)r−

(l−n
r−
)( n

r+
)

(α − 1)r
(l
r

) (11)

with r+ ∈ [0, r ] and the numbers r− ≥ 0, r0 ≥ 0 defined by the equations

r− = r+ − (n − m) , r0 = r − 2r+ + (n − m) .

The probability is zero if the triangle inequalities |n − r | ≤ m ≤ n + r are not satisfied.

Proof The probability is given by the proportion of strings in sphere S(x, r) that are also in
the sphere S(�,m):

P(m | n, r) = |S(�,m) ∩ S(x, r)|d(�,x)=n

|S(x, r)| .

The number in the intersection is given by (10), and the number of elements in S(x, r) is
(α − 1)r

(l
r

)
. ��
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Remark 2 The proof abovemakes an implicit assumption about a uniform distribution within
subsets (spheres), which is common if no other information about the distribution is given
(i.e. the principle of insufficient reason).

Example 3 (Binary case α = 2) For binary strings, formula (11) reduces to:

P(m | n, r) =
( l−n
r−r+

)( n
r+
)

(l
r

) , (12)

where r+ = 1
2 (r + n − m) must be non-negative integer (otherwise, the probability is

zero). Note that the right-hand-side of (12) is the hypergeometric distribution P{X = r+}
of r+ ∈ [0, r ] if it is considered as a random variable. The above formula is also valid for
α > 2 when the mutation radius d(x, y) = r is minimized (r = |n − m|) or maximized
(r = n + m), because there are no neutral substitutions in these cases.

Conditional probability (11) was implemented in a digital computer using Common Lisp
programming language, and Fig. 2 illustrates its dependency on parameters n and r in Ham-
ming space H40

4 (α = 4, l = 40). Three charts correspond to three values of distance
n ∈ {5, 20, 35} of the parent string. Abscissae show mutation radii r = d(x, y), while ordi-
nates show the resulting distances m = d(�, y) of offsprings after mutation. The grayscale
represents different values of probability P(m | n, r)with white corresponding to P = 0 and
black to P = 1. One can see that the mutation radius has different effects on the probability
depending on whether the parent’s distance n = d(�, x) is less or greater than the ‘equator’
l(1− 1/α): for n < l(1− 1/α) higher mutation radius makes larger distances m = d(�, y)
more likely, but the effect reverses for n > l(1 − 1/α). This corresponds to the fact that
in Hamming space closed ball with radius n > l(1 − 1/α) is larger than its complement.
One may also notice from Fig. 2 that the expected distance EP {m | n, r} may have a simple
relation to the mutation radius r = d(x, y). This relation is given below.

Proposition 1 The expected value and variance of the conditional probability distribu-
tion (11) for Hamming distance m = d(�, y) of string y ∈ S(x, r) obtained by a substitution
of d(x, y) = r letters in string x ∈ S(�, n) ⊂ Hl

α are

EP {m | n, r} = n +
(
1 − n

l(1 − 1/α)

)
r , (13)

σ 2
P {m | n, r} = n

[
α − 2

(α − 1)2
+ (l − n)(l − r)

(1 − 1/α)2l(l − 1)

]
r

l
. (14)

Fig. 2 Dependency of the probability P(m | n, r) (11) on the mutation radius r (abscissae) in space H40
4 .

Ordinates show the resulting distance d(�, y) = m after mutation. Three charts correspond to three distances
d(�, x) = n ∈ {5, 20, 35} of the parent string. Grayscale represents probability P ∈ [0, 1]
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The proof uses formulae (2) and (3) from Lemma 1, where the average probabilities
〈Pi 〉 and 〈Pi j 〉 are defined as functions of parameters n = d(�, x) and r = d(x, y). See
Appendix A.3 for details.

Formula (13) confirms the linear dependency of posterior expectation of distance m =
d(�, y) on the mutation radius as can be seen on Fig. 2. The slope of this dependency is
1− n/l(1− 1/α), which is positive if d(�, x) = n < l(1− 1/α) (i.e. if x is closer to � than
the ‘equator’) and negative if n > l(1 − 1/α). One can see also from (13) that at distance
n = l(1 − 1/α) the expected value of m = d(�, y) becomes independent of the mutation
radius r = d(x, y) and is equal to l(1−1/α). Also, the value r = l(1−1/α) of the mutation
radius makes the expectation of distance equal to l(1− 1/α) and independent of the parent’s
distance n = d(�, x), which corresponds to the uniform distribution P0(x) = α−l of strings.

Differentiation of (14) over r and setting the derivative to zero

∂

∂r
σ 2{m | n, r̂} = n

l

[
(α − 2)

(α − 1)2
+ (l − 2r̂)(l − n)

l(1 − 1/α)2(l − 1)

]
= 0

gives the saddle point, which is the maximum, because the second derivative is negative
(observe that the radius appears only in (l − 2r) with the minus sign). The mutation radius
maximizing the variance of offspring’s distance d(�, y) = m is

r̂(n) = l

2

[
1 + (α − 2)(l − 1)

α2(l − n)

]
.

One can see that generally, unless α = 2, the maximizing mutation radius depends on the
distance d(�, x) = n of the parent string, and it is not equal to the Hamming space equator
l(1 − 1/α) = l

2 [1 + (α − 2)/α].

2.4 Maximization of probability of beneficial mutation

The closed-form expression (11) combined with probability P(r | n) of the mutation radius
gives complete solution to transition probability (7) between spheres around the optimum
under mutation. This makes it possible to study Markov evolution of distance distributions
and solve related optimization problems. Here we consider two simple problems that have
exact solutions.

Proposition 2 (Minimization of the expected distance aftermutation) The expected value (13)
of Hamming distance d(�, y) = m after mutation of x ∈ S(�, n) ⊂ Hl

α into y ∈ S(�,m) is
minimized if themutation radius d(x, y) = r ∈ [0, l] has the values r = 0 for n < l(1−1/α),
r = l for n > l(1 − 1/α), and any value for n = l(1 − 1/α).

Proof The minimization EP {m | n, r} < n over the mutation radius r ∈ [0, l] follows
from (13). ��

It follows that for the simple point mutation operator (Example 2) the mutation rate
minimizing the expected distance after one mutation is

μ̂(n) =
⎧
⎨

⎩

0 if n < l(1 − 1/α)

1 − 1/α if n = l(1 − 1/α)

1 if n > l(1 − 1/α)

.

Although the offspring’s expected distance E{m | n, r} is independent of the mutation
radius at distance n = l(1 − 1/α) (so that μ can have any value), we use the value 1 − 1/α,
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because several known mutation rate functions μ(n) are monotonic and pass through this
value (e.g. the linear function μ(n) = n/l, derived below, passes through 1 − 1/α at n =
l(1 − 1/α)).

Note ‘step’ mutation rate function μ̂(n) above has the following problem. Notice that for
binary strings (α = 2) at distances d(�, x) = n > l/2 the mutation rate μ = 1 changes the
distances to d(�, y) = m = l−n < l/2. Thus, all bitstringswill be at distance d(�, y) ≤ l/2
after just one generation. A similar effect will occur for strings with alphabets α > 2, but it
may take several generations because of the possibility of neutral substitutions. Therefore,
after multiple generations the distribution of distances Pt+s(m) = Ms

μ(n)Pt (n), s > 1, will
not change due to mutation with rate μ = 0. It is clear that the step mutation rate function
is not optimal for evolution over multiple generations. Computer simulations show that a
sigmoid type mutation rate functions achieve optimality for multiple generations [4], but
analytic derivation of such results is not straightforward. Another approach is to maximize
the probability of mutation directly into the optimum: x �→ y = �.

Proposition 3 (Mutation into the optimum) The probability P(m = 0 | n, r) that string
x ∈ S(�, n) ⊂ Hl

α mutates into string y = � is zero unless d(x, y) = r(n) = n, in which
case the probability is

P(m = 0 | n, r = n) = 1

|S(x, n)| = 1

(α − 1)n
( l
n

) .

Proof This obvious result can be obtained formally by substituting the values r+ = n,
r− = r0 = 0 into (11). ��

Substitution of the above probability, which is reciprocal of the number of elements
in S(x, n), into (7) and using binomial distribution (8) for the mutation radius gives the
following formula for the probability of transition into optimum under simple point mutation
(Example 2):

Pμ(m = 0 | n) = (α − 1)−nμn(n)[1 − μ(n)]l−n .

The optimal mutation rate μ̂ maximizing this probability is

∂

∂μ
Pμ = (α − 1)−nμ̂n[1 − μ̂]l−n

(
n

μ̂
− l − n

1 − μ̂

)

︸ ︷︷ ︸
=0

= 0 ⇒ μ̂(n) = n

l
, (15)

∂2

∂μ2 Pμ = (α − 1)−nμ̂n[1 − μ̂]l−n

⎡

⎢⎢⎢⎣

(
n

μ̂
− l − n

1 − μ̂

)2

︸ ︷︷ ︸
=0

− l − 2n/μ̂ + n/μ̂2

(1 − μ̂)2

⎤

⎥⎥⎥⎦

= (α − 1)−nμ̂n[1 − μ̂]l−n
[
l(1 − l/n)

(1 − n/l)2

]
≤ 0 .

Indeed, one can see that for μ̂ = n/l the first derivative is zero, and the second derivative is
negative, because 1−l/n ≤ 0. Observe also that as the diameter of Hamming space increases
l → ∞ the optimal mutation rate μ̂(n) = n/l converges to zero for each n ∈ N.

These examples show that minimization of the mutation radius or mutation rate may not
always be optimal in Hamming space. The heuristic value μ = 1/l [15] is optimal only
at distance d(�, x) = 1 with respect to the criterion of Proposition 3. Although the exact
shapes of the mutation rate functions optimal subject to additional constraints may differ
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(e.g. see examples in [3–5, 8] for constraints on the number of generations or information
constraints), these functions have the common property of monotonically increasing optimal
mutation rates μ(n) with distance d(�, ·) = n from the optimum.

3 Recombination

3.1 Crossover recombination in a Hamming space

Recombination is a substitution of some letters in string x ∈ Hl
α by letters from another string

y ∈ Hl
α . In this paper, we shall only consider crossover recombination when letters xi are

substituted by letters yi with the same index i ∈ {1, . . . , l}. This corresponds to Hamming
metric (1) accounting for differences of letters only at the same indices.

Because in recombination we have to consider two parent strings x , y and their distances
from �, we have a triangle (x, y,�) and three distances:

n = d(�, x)

k = d(�, y)

h = d(x, y)

as shown on Fig. 3. The number r ∈ [0, l] of letters that are exchanged during crossover
between x and y will be referred to as the recombination radius, and it can be larger than the
distance h = d(x, y) between two strings, because crossovermay recombine identical letters.
After crossover of string x with y (the parents), the resulting new string z (the offspring) is a
mixture of l − r letters from x and r letters from y, and it is created ‘between’ its parents in
the sense of Hamming distance: d(z, y) ≤ d(x, y) and d(x, z) ≤ d(x, y). It is convenient to
denote the result of recombination as z = (1 − λ)x ⊕ λy, where λ = r/l, by analogy with
convex combination in a real space, although this is only a notational convenience (hence
the use of symbol ⊕ instead of +).

Recombination of x with y into z using r letters has a dual recombination z′, which can
be formed as a substitution of the remaining l − r letters from y into x . Thus, the dual
recombination is z′ = λx⊕ (1−λ)y in our ‘convex combination’ notation. Contrary to a real
space, a mixture z = (1 − λ)x ⊕ λy in a Hamming space is not unique, because it depends
on positions at which r letters are substituted. The totality of all possible recombinations of
r letters between two strings has been called a recombination potential [29]:

I (x, y, r) := {z = (1 − λ)x ⊕ λy : λ = r/l} .

Fig. 3 Recombination of string x ∈ S(�, n) with y ∈ S(�, k) into string z ∈ S(�,m) by crossover of
r ∈ [0, l] letters. Thenumber of strings in the intersection S(�,m)∩I (x, y, r)defines the geometric probability
P(m | n, k, h, r) (22)
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The number of strings in I (x, y, r) is

|I (x, y, r)| =
(
l

r

)
.

Note that some strings in I (x, y, r) may appear more than once, because different recom-
binations may result in the same offspring. This makes I (x, y, r) a multiset. Also, because
substitution of r letters from y into x is the same as substitution of the remaining l − r letters
from x into y, we have the following equality:

I (x, y, r) = I (y, x, l − r) .

Exchanging different letters xi 	= yi at the same indices cannot make them equal, so that
the Hamming distance between two parent strings x , y and between their recombinations
z = (1−λ)x ⊕λy and z′ = (1−λ)y⊕λx remain the same: d(x, y) = d(z, z′). This implies
that recombination potential I (x, y, r) has a round shape: its elements belong to a sphere of
diameter h = d(x, y) as shown on Fig. 3.

If distance d(�, ·) from the optimum � is taken as a model of (negative) fitness, then
recombination is called beneficial for parent x ∈ S(�, n) if it corresponds to a transition
onto sphere S(�,m) � z of a smaller radius m < n, as shown on Fig. 3. Recombination is
neutral if m = n, and deleterious if m > n. Note that a recombination can be beneficial for
x ∈ S(�, n), but not necessarily for y ∈ S(�, k).

Example 4 (Crossover recombination) Let � = (AAAAA) ∈ H5
3 and consider strings x =

(BBBAA) and y = (BACBA) recombining into string z = (BABBA), which can be obtained
by a substitution of the second, fourth and the last letters in x by the corresponding letters
from y:

� = (AAAAA)

n=3

k=3

m=3

x = (BBBAA)
r=r++r0+r−=3

(BA
r+
BB
r−
A
r0

) = z

y = (BA
h+
C
h0
B
h−
A)

h=h++h0+h−=3

The dual offspring is z′ = (BBCAA). Thus, the recombination radius is r = 3, and the
recombination is neutral, because d(�, x) = d(�, z) = 3. Note that although the recombi-
nation radius was r = 3, only two of these substitutions occurred out of d(x, y) = h = 3
different letters; the third substitution was made for identical letters. A substitution of the
second, third and the last letters in x = (BBBAA) by the corresponding letters from
y = (BACBA) results in string v = (BACAA), which is closer to the optimum, d(�, v) = 2.

As with mutation, we denote by r+, r− and r0 the numbers of beneficial, deleterious and
neutral substitutions respectively. They satisfy the same equations as (4) and (5):

r+ + r− + r0 = r , (16)

r+ − r− = n − m . (17)

Here, n = d(�, x) and m = d(�, z). The numbers r+ and r− count beneficial or dele-
terious substitutions for parent x , but not necessarily for parent y. These substitutions can
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only occur for h = d(x, y) different letters. Therefore, r+ ≤ h+ and r− ≤ h−, where h+
and h− are the maximum possible numbers of beneficial and deleterious substitutions for
x and h+ + h− ≤ h = d(x, y). Denoting by h0 the maximum number of possible neutral
substitutions out of h different letters, the equations for these maximal numbers are

h+ + h− + h0 = h , (18)

h+ − h− = n − k . (19)

These equations are identical to (4) and (5) if parent y is considered as a mutated version
of parent x with h = d(x, y) considered as the mutation radius. As mentioned earlier,
substitutions during crossover may occur also among the l − d(x, y) = l − h identical
letters (as in Example 4). Such substitutions are neutral, and therefore it is possible that
r0 > h0. In fact, the range of recombination radius is r ∈ [0, l], and it can be larger than
h = d(x, y). Changes between the parent and offspring strings are defined only by the
distance h = d(x, y), and we shall refer to it as recombination capacity.

The range of recombination capacity is defined by the triangle inequalities:

|n − k| ≤ h ≤ n + k

Aswithmutation radius, there are no potential neutral substitutions (h0 = 0) at the extreme
values h = |n − k| or h = n + k.

Proposition 4 (Dual recombination) If crossover recombination of x ∈ S(�, n) with
y ∈ S(�, k) by exchanging r ∈ [0, l] letters results in string z ∈ S(�,m), then the dual
recombination z′ ∈ S(�,m′) is at distance d(�, z′) = m′:

m′ = n + k − m .

See Appendix A.4 for the proof. Intuitively, if x receives n − m letters yi = �i from y,
then the Hamming distance reduces from d(�, x) = n to d(�, z) = n − (n − m) = m.
At the same time, string y receives n − m letters xi 	= �i from x (the dual recombination),
which means that d(�, y) = k changes to d(�, z′) = k + n − m.

3.2 Evolutionary dynamics under recombination

Crossover recombination can be viewed as a transition from the pair (x, y) ∈ Hl
α × Hl

α

of two parent strings to the pair (z, z′) ∈ Hl
α × Hl

α of recombination z and its dual z′.
The corresponding transition probability P(z, z′ | x, y) induces a transformation of the
distribution Pt (x, y) of the parent pairs into the distribution Pt+1(z, z′) of the offspring
pairs:

Pt+1(z, z
′) =

∑

(x,y)∈Hl
α×Hl

α

P(z, z′ | x, y) Pt (x, y) .

Joint distributions Pt (x, y) represent pairing probabilities of the parent strings for recom-
bination, and they may depend on various properties such as fitness of individuals as well as
their similarity. Thus, generally Pt (x, y) = Pt (y | x)Pt (x) and Pt (y | x) 	= Pt (y).

The joint pairing distributions Pt (x, y) induce the corresponding joint distributions of
distances n = d(�, x) and k = d(�, y) of the paired strings:

Pt (n, k) := Pt {x ∈ S(�, n), y ∈ S(�, k)} .
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These joint distributions can be formed as products Pt (k | n)Pt (n), where Pt (n) :=
Pt {x ∈ S(�, n)}. If strings (x, y) are paired independently, then Pt (k, n) = Pt (k)Pt (n).
However, generally Pt (k | n) 	= Pt (k).

Example 5 (Matching) If string x ∈ S(�, n) is paired with string y ∈ S(�, k) at equal
distances d(�, x) = n = k = d(�, y), then

P(k | n) = δn(k) , Pt (n, k) =
{
Pt (n) if k = n
0 otherwise

.

This joint distribution may occur as an equilibrium solution to a minimax problem [34],
when both parents minimize distances d(�, ·) of the strings they are recombined with (i.e.
maximizing fitness of their partners).

Apart from the distances from �, each pair of strings x, y ∈ Hl
α is characterized also

by their distance h = d(x, y) (recombination capacity). The joint distribution Pt (n, k, h) =
Pt (h | n, k)Pt (n, k) is also defined by the pairing distribution Pt (x, y).

Example 6 (Random pairing from a sphere) Consider string x ∈ S(�, n) paired with string
y ∈ S(�, k) (i.e. distances d(�, x) = n and d(�, y) = k are fixed). If string y ∈ S(�, k) is
chosen uniformly at random from S(�, k), then conditional probability P(h | n, k) is defined
by the intersection of spheres S(x, h) and S(�, k) (see Fig. 3):

P(h | n, k) = |S(x, h) ∩ S(�, k)|d(�,x)=n

|S(�, k)|

=

h∑
h+=0

(α − 2)h0
(n−h+

h0

)
(α − 1)h−(l−n

h−
)( n

h+
)

(α − 1)k
(l
k

) .

The latter formula is obtained using (10) for intersection of sphereswith distanced(x, y) =
h = h+ + h− + h0 treated as the mutation radius r = r+ + r− + r0 and substituting k for
m. The probability is zero if the triangle inequalities |n − k| ≤ h ≤ n + k are not satisfied.

Example 7 (Pairing at specific distance) One can try to pair strings choosing a specific value
of the distance d(x, y) = h between the parent strings (assuming that the current population
has individuals satisfying this equality constraint). The range of h ∈ [0, l] is defined by the
triangle inequalities: |n − k| ≤ h ≤ n + k (and n + k ≤ l). For example, choosing the
maximum value h = min{n + k, l} corresponds to the probability

P(h | n, k) = δmin{n+k,l}(h) .

Minimization of h corresponds to δ|n−k|(h), and the average h = 1
2 (|n − k| + n + k) =

max{n, k} to δmax{n,k}(h).

Recombination of strings (x, y) into (z, z′), where z′ denotes the dual recombination,
results in a transformation of distances n = d(�, x) and k = d(�, y) into distances
m = d(�, z) and m′ = d(�, z′). The joint distributions of distance pairs Pt (n, k) :=
Pt {x ∈ S(�, n), y ∈ S(�, k)} and Pt+1(m,m′) := Pt+1{z ∈ S(�,m), z′ ∈ S(�,m′)} are
transformed as follows:

Pt+1(m,m′) =
l∑

n=0

l∑

k=0

P(m,m′ | n, k) Pt (n, k) ,
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where P(m,m′ | n, k) is the transition probability between the pairs of spheres of radii (n, k)
and (m,m′):

P(m,m′ | n, k) := P{z ∈ S(�,m), z′ ∈ S(�,m′) | x ∈ S(�, n), y ∈ S(�, k)} .

The analysis is similar to mutation, but the transformations are now applied to joint
distributions of distance pairs. One can also obtain the transformation of distance distribution
Pt (n) := Pt {x ∈ S(�, n)} into Pt+1(m) := Pt+1{z ∈ S(�,m)}:

Pt+1(m) =
l∑

m′=0

l∑

n=0

l∑

k=0

P(m,m′ | n, k) P(k | n)Pt (n) .

Note that m′ = n + k − m for crossover recombination (Proposition 4), so that

P(m,m′ | n, k) =
{
P(m | n, k) if m′ = n + k − m
0 otherwise

.

Thus, the summation over m′ ∈ [0, l] above is not necessary, and it is sufficient to derive
the expressions using only probability P(m | n, k).

If the transition kernels P(m | n, k) and P(k | n) are time invariant, then the linear
operator

R(·) =
l∑

n=0

[
l∑

k=0

P(m | n, k) P(k | n)

]
(·) (20)

acting on distributions Pt (n) of distances d(�, x) = n ∈ [0, l] generates the entire evolution
{Pt }t≥0 due to recombination as Pt+s = Rs Pt . This can be used in simulations to analyse
the effects of recombination and pairing strategies on evolution.

In Section 2 on mutation, we expanded transition probability P(m | n) over all values
of the mutation radius r ∈ [0, l] (7). Similarly, here we expand the transition probability
P(m | n, k) over all values of the recombination radius r ∈ [0, l] and recombination capacity
h = d(x, y):

P(m | n, k) =
l∑

r=0

l∑

h=0

P(m | n, k, h, r) P(r | n, k, h)︸ ︷︷ ︸
Recombination

P(h | n, k)︸ ︷︷ ︸
Pairing

. (21)

The probability P(h | n, k) has been discussed in Examples 6 and 7. The probability
P(r | n, k, h) of recombination radius r ∈ [0, l] can be determined from the analysis of the
recombination operator.

Example 8 (Uniform crossover) In this form of recombination, letters xi and yi at each
position i ∈ {1, . . . , l} in the parent strings are swapped with probability ν ∈ [0, 1], called
the recombination rate, independently of letters x j and y j at other positions. In this case,
P(r | n, k, h) is the binomial distribution:

Pν(r | n, k, h) =
(
l

r

)
νr (n, k, h)[1 − ν(n, k, h)]l−r .

The rate ν may be different for different values of n, k, h ∈ [0, l], so that the recombination
operator depends on the recombination rate control function ν(n, k, h).

Example 9 (One point crossover) In this form of recombination a single index i ∈ {1, . . . , l}
is selected in the parent strings x and y, and all letters x j , y j with j ≥ i are swapped. Thus, if
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i = �l/2�, then approximately half of the letters are swapped, and the recombination radius
is r = �l/2� (here �·� denotes the nearest integer). In this case, P(r | n, k, h) is the Dirac
distribution:

P(r | n, k, h) = δ�l/2�(r) .

Observe that the recombination radius in this case is equal to r = l − i , where i is the
index of one point crossover. Potentially, one can define one-point crossover with variable
index i = l − r , where the value r = r(n, k, h) of the recombination radius may depend on
distances n, k and h.

Using factorization (21), the recombination operator (20) acting on distributions of dis-
tances from � takes the form

R(·) =
l∑

n=0

[
l∑

k=0

l∑

r=0

l∑

h=0

P(m | n, k, h, r) P(r | n, k, h) P(h | n, k)P(k | n)

]
(·) ,

where probabilities P(k, h | n) = P(h | n, k)P(k | n) are defined by the pairing strategy
(Examples 5, 6, 7) and P(r | n, k, h) by the crossover process (Examples 8, 9). The unknown
conditional probability P(m | n, k, h, r) will be determined in the next section.

3.3 Geometric probability of recombination onto a sphere

Similar to geometric probability P(m | n, r) defined in (9) for mutation, the probability
P(m | n, k, h, r) in factorization (21) represents a purely geometric problem depicted on
Fig. 3:

P(m | n, k, h, r) :=
P{z ∈ S(�,m) | x ∈ S(�, n), y ∈ S(�, k) ∩ S(x, h), r ∈ [0, l]} (22)

Solution to this geometric problem requires counting the number of elements in cer-
tain subsets. The sought offspring strings are in the intersection of recombination potential
I (x, y, r) and sphere S(�,m). The difference n − m of the radii of spheres S(�, n) and
S(�,m) defines the difference r+ − r− of beneficial and deleterious substitutions into string
x from y (17). The upper bounds r+ ≤ h+ and r− ≤ h− can be defined from the conditions
on the parent strings: x ∈ S(�, n) and y ∈ S(�, k) ∩ S(x, h) (i.e. by the distances n, k and
h for the triangle (�, x, y)). Indeed, h+ ≤ h = d(x, y) and h− = h+ − (n − k) by (19),
where n = d(�, x) and k = d(�, y). It is convenient to count strings in the intersection
S(�,m)∩ I (x, y, r) by grouping them based on the values h+ ∈ [0, h] of possible beneficial
substitutions. We shall denote by [h+] the class of all strings y that have r+ ≤ h+ beneficial
substitutions into x .

Lemma 3 (Intersection of sphere and recombination potential) Let x ∈ S(�, n) ⊂ Hl
α , and

let [h+] be the class of all strings y ∈ S(�, k) ∩ S(x, h) such that the number of beneficial
substitutions from y into x (reducing the distance d(�, x) = n) be at most h+ ≤ h. Then the
number of elements in the intersection of S(�,m) with recombination potential I (x, y, r)
for y ∈ [h+] is

∣∣∣S(�,m) ∩ I (x, y, r)
∣∣∣
y∈[h+] =

h+∑

r+=0

(
l − h+ − h−
r − r+ − r−

)(
h−
r−

)(
h+
r+

)
, (23)

where h− = h+ − (n − k) ≥ 0, r− = r+ − (n −m) ≥ 0 and r+ ∈ [0, h+], r − r+ − r− ≥ 0.
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Proof Given the maximum numbers h+ and h− = h+ − (n−k) of beneficial and deleterious
substitutions (observe that h− depends on n = d(�, x) and k = d(�, y)), the remaining
l−h+ −h− letters can only make neutral substitutions. Thus, for specific values of r+ ≤ h+,
r− ≤ h−, the total number of combinations is

(
l − h+ − h−
r − r+ − r−

)(
h−
r−

)(
h+
r+

)
,

where r− = r+−(n−m) from (17), and r−r+−r− ≥ 0 is the total number of neutral recom-
binations from (16). Feasible values of r+ ∈ [0, h+] are determined from non-negativity of
r− and r − r+ − r−. The total number is obtained by summing over all feasible values of
r+ ∈ [0, h+]. ��

The maximum number of beneficial substitutions is bounded above h+ ≤ h = d(x, y),
and adding the numbers in (23) for all h+ ∈ [0, h] would account for all strings in the
intersection S(�,m)∩ I (x, y, r). However, the classes [h+] are not distributed uniformly as
theyhavedifferent sizes. Indeed, the totality of all strings y to be recombinedwith x ∈ S(�, n)

is the intersection of spheres S(�, k) and S(x, h), as shown on Fig. 3. The number of strings
in this intersection is given by formula (10) in Lemma 2, where instead of mutation radius
r = r0 + r− + r0 we have to use recombination capacity h = h+ + h− + h0 and substituting
k for m. In fact, the number of strings y in the intersection S(�, k) ∩ S(x, h) with specific
values of the maximum numbers h+, h− and h0 is

(α − 2)h0
(
n − h+
h0

)
(α − 1)h−

(
l − n

h−

)(
n

h+

)
.

This can be used to derive probability (22).

Theorem 2 (Geometric probability of recombination onto a sphere) The probability P(m |
n, k, h, r) that crossover recombination of r ∈ [0, l] letters in string x ∈ S(�, n) ⊂ Hl

α with
string y ∈ S(�, k) ∩ S(x, h) results in string z ∈ S(�,m) is

P(m | n, k, h, r) =
h∑

h+=0
(α − 2)h0

(n−h+
h0

)
(α − 1)h−(l−n

h−
)( n

h+
) h+∑
r+=0

(l−h+−h−
r−r+−r−

)(h−
r−
)(h+

r+
)

(l
r

) h∑
h+=0

(α − 2)h0
(n−h+

h0

)
(α − 1)h−

(l−n
h−

)( n
h+
) (24)

with r+ ∈ [0, h+], h+ ∈ [0, h] and the numbers h− ≥ 0, h0 ≥ 0, r− ≥ 0, r − r+ − r− ≥ 0
defined by the equations

h− = h+ − (n − k) , h0 = h − 2h+ + (n − k) , r− = r+ − (n − m) .

The probability is zero if the triangle inequalities |n − k| ≤ h ≤ n + k or |n − m| ≤
min{r , h} ≤ n + m are not satisfied.

Proof The probability P(m | n, k, h, r) can be expressed as the following sum of products
of conditional probabilities P(m | n, k, h, r , h+) and P(h+ | n, h, k) for all values of
h+ ∈ [0, h]:

P(m | n, k, h, r) =
h∑

h+=0

P(m | n, k, h, r , h+)P(h+ | n, k, h) . (25)
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Observe that the recombination radius r does not occur in probability P(h+ | n, h, k).
This is because the maximum number of possible beneficial recombinations h+ ∈ [0, h] is
defined solely by the parent strings, and it is independent of r .

Here, P(m | n, k, h, r , h+) is the probability that an offspring z in the recombination
potential I (x, y, r) is at distance m = d(�, z) from the optimum subject to the condition
that the parent string y has at most h+ potential beneficial recombinations (fixing specific
three points (�, x, y) in aHamming space alsofixes their distancesn = d(�, x), k = d(�, y)
and h = d(x, y)). This probability is the ratio of strings in the intersection of sphere S(�,m)

with potential I (x, y, r) with the condition y ∈ [h+] over all offspring strings in I (x, y, r):

P(m | n, k, h, r , h+) = |S(�,m) ∩ I (x, y, r)|y∈[h+]
|I (x, y, r)| .

The number |S(�,m) ∩ I (x, y, r)|y∈[h+] is given by (23), and the number of elements in
the potential I (x, y, r) is

(l
r

)
, so that

P(m | n, k, h, r , h+) =

h+∑
r+=0

(l−h+−h−
r−r+−r−

)(h−
r−
)(h+

r+
)

(l
r

) , (26)

where r+−r− = n−m with the constraints r− ≥ 0, r−r+−r− ≥ 0 and h− = h+−(n−k) ≥
0.

Probability P(h+ | n, k, h) is the ratio of parent strings y with at most h+ beneficial
recombinations in the intersection S(�, k) ∩ S(x, h) out of all parent strings in this intersec-
tion:

P(h+ | n, k, h) = |S(�, k) ∩ S(x, h)|d(�,x)=n, d(�,y)=k, y∈[h+]
|S(�, k) ∩ S(x, h)|d(�,x)=n

.

Using (10) for intersection of the spheres and making the described earlier substitutions
this probability is

P(h+ | n, k, h) =
(α − 2)h0

(n−h+
h0

)
(α − 1)h−(l−n

h−
)( n

h+
)

h∑
h+=0

(α − 2)h0
(n−h+

h0

)
(α − 1)h−

(l−n
h−

)( n
h+
) , (27)

where h+ − h− = n − k and h+ + h− + h0 = h with the constraints h− ≥ 0, h0 ≥ 0. The
final formula (24) is obtained by the substitution of (26) and (27) into (25). ��
Remark 3 The summations in (24) are shown across all r+ ∈ [0, h+] and h+ ∈ [0, h], but it
is important to check also that all other indices are non-negative: r− ≥ 0, r − r+ − r− ≥ 0,
h− ≥ 0 and h0 ≥ 0. The triangle inequalities |n − k| ≤ h ≤ n + k imply the following
bounds max{0, n − k} ≤ h+ ≤ 1

2 (h + n − k) ≤ h (and similar for r+), which can be used
for a more efficient implementation.

Example 10 (Binary case α = 2) In the binary case there are no neutral substitutions among
h = d(x, y) different letters, and therefore h0 = 0, h = h+ + h− and h+ − h− = n − k
define one possible value h+ = 1

2 (h + n − k). Probability (27) becomes

P(h+ | n, k, h) = δ 1
2 (h+n−k)(h+) .
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Substitutingh+ = 1
2 (h+n−k) andusing the conditions r+ ∈ [0, h+], r− = r+−(n−m) ≥

0, r0 = r − 2r+ + (n − m) ≥ 0 formula (24) reduces to

P(m | n, k, h, r) =

h+∑
r+=0

( l−h
r−2r++(n−m)

)( h−h+
r+−(n−m)

)(h+
r+
)

(l
r

) .

This formula is also valid for α > 2 when the distance d(x, y) = h is minimized (h =
|n − k|) or maximized (h = n + k), because there are h0 = 0 possible neutral substitutions
among h = d(x, y) different letters in these cases.

Conditional probability (24) was implemented in a digital computer using Common Lisp
programming language, and Figs. 4–6 illustrate its dependency on parameters n, k, h and
r in Hamming space H40

4 (α = 4, l = 40). Ordinates on all charts show the resulting
distance m = d(�, z) of offspring after crossover. The grayscale represents different values
of probability P(m | n, k, h, r) with white corresponding to P = 0 and black to P = 1.

Figure 4 shows the effect of distance k = d(�, y) of the second parent (abscissae) relative
to the distance n = d(�, x) of the first parent shown on three charts for n ∈ {10, 20, 30}. On
all charts recombination radius was r = �l/2� = 20 and capacity d(x, y) = h = max{n, k}.
One can see that the resulting distribution appears to have linear dependency on distance
d(�, y) = k, and (as expected) crossover with d(�, y) < d(�, x) increases the chance of
beneficial recombination.

Figure 5 shows the effect of recombination capacity h = d(x, y) (abscissae). Three charts
correspond to distances d(�, y) = k ∈ {10, 20, 30} and d(�, x) = n = 20. Recombination
radius was r = �l/2� = 20 on all charts. One can see that recombination capacity increases
the variance of the resulting distribution of d(�, z) = mwith themaximumvariance achieved
for h = n + k.

Figure 6 shows the effect of recombination radius r (abscissae). Three charts correspond
to three distances d(�, y) = k ∈ {10, 20, 30} of the second parent and distance d(�, x) =
n = 20. Recombination capacity was d(x, y) = h = max{n, k} on all charts. One can see
that small recombination radius concentrates the probability at distance of the first parent,
while increasing the radius concentrates the probability at distance of the second parent (as
expected). One can see also the variance of the offspring’s distance d(�, z) = m appears to
be maximized at r = �l/2� = 20.

Fig. 4 Dependency of the probability P(m | n, k, h, r) (24) on the distance d(�, y) = k of the second string
(abscissae) in space H40

4 . Ordinates show the resulting distance d(�, z) = m after crossover. Three charts
correspond to three distances d(�, x) = n ∈ {10, 20, 30} of the first parent string. Grayscale represents
probability P ∈ [0, 1]. Parameters d(x, y) = h = max{n, k} and r = 20
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Fig. 5 Dependency of the probability P(m | n, k, h, r) (24) on the recombination capacity d(x, y) = h
(abscissae) in space H40

4 . Ordinates show the resulting distance d(�, z) = m after crossover. Three charts
correspond to three distances d(�, y) = k ∈ {10, 20, 30}. Parameters d(�, x) = n = 20 and r = 20.
Grayscale represents probability P ∈ [0, 1]

The above observations about the expected value and variance of distance d(�, z) = m
after crossover are confirmed by the corresponding formulae below.

Proposition 5 The expected value and variance of conditional probability distribution (24)
for Hamming distance m = d(�, z) of string z obtained by a crossover recombination of
r ∈ [0, l] letters in string x ∈ S(�, n) from string y ∈ S(�, k) ∩ S(x, h) in a Hamming
space Hl

α are

EP {m | n, k, h, r} = n + (k − n)

l
r , (28)

σ 2
P {m | n, k, h, r} =

[
h − 〈h0〉 − (n − k)2

l

]
r(l − r)

l(l − 1)
. (29)

Here 〈h0〉 := E{h0 | n, k, h} is the expected maximum number of neutral substitutions
among h = d(x, y) different letters, which is computed using formula (27) for conditional
distribution P(h+ | n, k, h) and using the relation h0 = h − 2h+ + n − k.

The proof uses formulae (2) and (3) from Lemma 1, where probabilities 〈Pi 〉 and 〈Pi j 〉
are defined as functions of parameters d(�, x) = n, d(�, y) = k, d(x, y) = h and recom-
bination radius r ∈ [0, l]. See Appendix A.5 for details.

Fig. 6 Dependency of the probability P(m | n, k, h, r) (24) on the recombination radius r ∈ [0, l] (abscissae)
in space H40

4 . Ordinates show the resulting distance d(�, z) = m after crossover. Three charts are shown
for three values of distance d(�, y) = k ∈ {10, 20, 30}. Parameters d(�, x) = n = 20 and d(x, y) = h =
max{n, k}. Grayscale represents probability P ∈ [0, 1].
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Formula (28) confirms ‘linear’ dependency that can be seen on Fig. 6. The slope of this
dependency is defined by the difference d(�, y) − d(�, x) = k − n of distances of the
two parent strings. Similarly, the variance depends only on the squared difference (n − k)2

in (29). Thus, the slope and the variance of distance distribution after crossover are invariant
under translation n �→ n + m and k �→ k + m of distances from the optimum (since
n + m − k − m = n − k).

Formula (29) shows also that the variance is maximized at equal distances d(�, x) =
d(�, y) (i.e. (n − k)2 = 0) and when recombination capacity d(x, y) = h is maximized:
h = n + k (in which case 〈h0〉 = 0). These effects of distances d(�, x) = n, d(�, y) = k
and capacity d(x, y) = h on the variance are shown on Fig. 7.

The dependency of variance (29) on the recombination radius r ∈ [0, l] is particularly
interesting, as this parameter is independent of the others. Maximization gives the following
result:

∂

∂r
σ 2{m | n, k, h, r} =

[
h − 〈h0〉 − (n − k)2

l

]
l − 2r̂

l(l − 1)
= 0 ⇒ r̂ = l

2
,

(the second derivative is negative). Therefore, the variance of distances after crossover recom-
bination is maximized when exactly half of the letters in the strings are recombined. This
corresponds to the one-point crossover at index i = �l/2�. For uniform crossover with rate
ν = 1/2 recombination radius is random with the mean value l/2.

Finally, let us show and discuss the following symmetry property of beneficial and dele-
terious crossover recombinations.

Proposition 6 Geometric probability (24) has the following symmetry:

P(m | n, k, h, r) = P(n + k − m | n, k, h, l − r) .

See Appendix A.6 for the proof. Notice that for strings at equal distances d(�, x) =
d(�, y) = n the probability that recombinations is beneficial m = n − (n −m) < n is equal
to the probability that the dual recombination is deleterious m′ = n + n − m > n. Thus,
chances of beneficial and deleterious recombinations are in a certain sense equal, and this
property is uniform across the entire Hamming space Hl

α . This is different from mutation,
because beneficial mutations are less frequent than deleterious mutations for all strings with
d(�, x) < l(1 − 1/α).

Fig. 7 Dependency of the probability P(m | n, k, h, r) (24) in space H40
4 on the distance d(�, y) = k of

the second string (abscissae) and using three strategies for recombination capacity d(x, y) = h: minimization
h = |n − k| (left), mean h = max{n, k} (centre), maximization h = n + k ≤ l (right). Ordinates show the
resulting distance d(�, z) = m after crossover. Recombination radius r = 20.Grayscale represents probability
P ∈ [0, 1]
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3.4 Maximization of probability of beneficial recombination

The closed-form expression (24) combined with probabilities of the recombination radius
P(r | n, k, h) and recombination capacity P(h | n, k) gives complete solution to transition
probability (21) between pairs of spheres around optimum after crossover. This makes it
possible tomaximize the probability of beneficial crossover recombination.Aswithmutation,
however, this optimization problem can be defined in many different ways (e.g. subject to a
constraint on the number of generations). Below we consider two simplified problems that
have exact solutions.

Proposition 7 (Minimizationof the expecteddistanceafter crossover)The expected value (28)
of Hamming distance d(�, z) = m after crossover of x ∈ S(�, n)with y ∈ S(�, k)∩S(x, h)

into z ∈ S(�,m) is minimized if the recombination radius r ∈ [0, l] has the values r = 0
for n < k, r = l for n > k, and any value for n = k.

Proof The minimization EP {m | n, k, h, r} < n over the recombination radius r ∈ [0, l]
follows from (28). ��

This simple result implies the following recombination rate function for the uniform
crossover operator (Example 8):

ν̂(n, k) =
⎧
⎨

⎩

0 if n < k
1/2 if n = k
1 if n > k

.

The application of such a strategy for recombination can be limited if the population has
no individuals with equal distances d(�, x) = d(�, y). Another approach is to maximize the
probability of crossover recombination directly into optimum. As for mutation, this problem
has exact solution.

Proposition 8 (Recombination into the optimum) The probability P(m = 0 | n, k, h, r) that
crossover recombination of string x ∈ S(�, n) ⊂ Hl

α with y ∈ S(�, k) ∩ S(x, h) results in
string z = � is

P(m = 0 | n, k, h, r) = |{� ∈ I (x, y, r)}|
|I (x, y, r)| =

⎧
⎨

⎩

(l−h
r−n)

(lr)
if h = n + k ≤ l, n ≤ r ≤ l − k

0 otherwise
,

where |{� ∈ I (x, y, r)}| is the number of copies of element� in the recombination potential
I (x, y, r) (recall that it is a multiset); h = d(x, y) is recombination capacity, and r ∈ [0, l]
is recombination radius. The optimal recombination radius maximizing the above probability
is

r̂ =
⌊
l

(
n

n + k

)⌉
, (30)

where n = d(�, x) and k = d(�, y) (here �·� denotes the nearest integer).
Proof Crossover recombination into z = �, d(�, z) = m = 0, implies that the recombina-
tion radius is r ≥ n = d(�, x) letters, of which there should be exactly r+ = n beneficial
substitutions, andwhich is also their maximum number h+ = n. For deleterious substitutions
r− = 0 and h− = h+ −(n−k) = k = d(�, y) by (19). There can be no neutral substitutions
among h = d(x, y) different letters, which implies h0 = 0 and h = h+ +h− = n+ k. Thus,
recombination capacity h = d(x, y) must be maximized (this also maximizes the variance

123



R. V. Belavkin

of distances after crossover (29)). There can be r0 = r − r+ − r− = r − n ≥ 0 neutral
substitutions among l − d(x, y) = l − h identical letters, which also must be identical to the
corresponding letters in �. Because r0 = r − n ≤ l − h = l − n − k, we also obtain the
upper bound r ≤ l − k. The formula for the probability P(m = 0 | n, k, h, r) is obtained
by substituting the values r+ = h+ = n, r− = 0, r0 = r − n, h− = k, h = h+ + h− into
formula (24) and considering the constraints h = d(x, y) = n + k ≤ l and n ≤ r ≤ l − k.
This probability is the proportion of all optimal elements � in the recombination potential
I (x, y, r), which is a multiset (i.e. it may contain multiple copies of �).

The optimal recombination radius r ∈ [n, l − k] maximizing the probability can be found
by setting its derivative over r to zero. Using the following formula for the derivative of the
binomial coefficient [35]:

∂

∂r

(
l

r

)
=
(
l

r

)
[Hl−r − Hr ] ,

where Hr is the r th harmonic number, and employing simple approximation Hr ≈ ln r gives
the following necessary optimality condition:

∂

∂r

(l−n−k
r−n

)
(l
r

) =
(l−n−k

r̂−n

)
(l
r̂

)
[
Hl−k−r̂ − Hr̂−n − Hl−r̂ + Hr̂

]

≈
(l−n−k

r̂−n

)
(l
r̂

)
[
ln

(l − k − r̂)r̂

(r̂ − n)(l − r̂)

]
= 0 .

The root r̂ of the above equation is obtained by setting the logarithm to zero resulting in
the following equations:

(l − k − r̂)r̂ = (r̂ − n)(l − r̂) ⇒ −kr̂ = −n(l − r̂) ⇒ r̂ = l

(
n

n + k

)
.

One can check also that the second derivative is negative for r̂ :

∂2

∂r2

(l−n−k
r−n

)
(l
r

) ≈
(l−n−k

r̂−n

)
(l
r̂

)

[(
ln

(l − k − r̂)r̂

(r̂ − n)(l − r̂)

)2

+ ∂

∂r
ln

(l − k − r̂)r̂

(r̂ − n)(l − r̂)

]
.

The square of the logarithm on the left is zero at r̂ . The derivative of the logarithm on the
right is

∂

∂r
ln

(l − k − r̂)r̂

(r̂ − n)(l − r̂)
= − 1

l − k − r̂
+ 1

l − r̂
− 1

r̂ − n
+ 1

r̂

∣∣∣∣
r̂=l

(
n

n+k

)

= (n + k)

[
1

n
+ 1

k

] [
1

l
− 1

l − (n + k)

]
≤ 0 ,

because l ≥ l − (n + k). Formula (30) is the nearest integer of l
(

n
n+k

)
. ��

The procedure for maximizing the probability P(m = 0 | n, k, h, r) of crossover recom-
bination into the optimum � can now be outlined:

1. Let x ∈ S(�, n) be the first parent string (i.e. the distance d(�, x) = n is fixed).
2. Choose the set {y ∈ S(�, k)} of second parents as close as possible to the optimum

�, because decreasing the distance d(�, y) = k increases the numerator
(l−h
r−n

)
in the

probability P(m = 0 | n, k, h, r).
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3. Choose the second parent y ∈ S(�, k) with the maximum recombination capacity
d(x, y) = h = n + k ≤ l (otherwise, the probability P(m = 0 | n, k, h, r) is zero).

4. Recombine precisely r̂ =
⌊
l
(

n
n+k

)⌉
letters to maximize P(m = 0 | n, k, h, r).

One can see from formula (30) that the optimal recombination radius increases with
distance d(�, x) = n of the first string and decreases with distance d(�, y) = k of the
second string. Observe also that at equal distances n = k the optimal value is r̂ = l/2, which
also maximizes the distance variance (29).

In the end of this section, let us compare two recombination operators — the uniform
(Example 8) and the one-point crossover (Example 9). In the case of uniform crossover, the
recombination radius is a binomial random variable, and taking into account the conditions
h = n + k and r ∈ [n, l − k] we obtain

Pν(m = 0 | n, k) =
l−k∑

r=n

(
l − n − k

r − n

)
νr (n, k)[1 − ν(n, k)]l−r .

Optimization of the recombination rate is complicated due to the range of possible recom-
bination radii r ∈ [n, l − k]. For simplicity, let us assume that r takes only one value
r ∈ [n, l − k]. In this case, the maximum is found by differentiation:

∂

∂ν
Pν =

(
l − n − k

r − n

)
ν̂r [1 − ν̂]l−r

(
r

ν̂
− l − r

1 − ν̂

)

︸ ︷︷ ︸
=0

= 0 ⇒ ν̂ = r

l
,

∂2

∂ν2
Pν =

(
l − n − k

r − n

)
ν̂r [1 − ν̂]l−r

⎡

⎢⎢⎢⎣

(
r

ν̂
− l − r

1 − ν̂

)2

︸ ︷︷ ︸
=0

− l − 2r/ν̂ + r/ν̂2

(1 − ν̂)2

⎤

⎥⎥⎥⎦

=
(
l − n − k

r − n

)
ν̂r [1 − ν̂]l−r

[
l(1 − l/r)

(1 − r/l)2

]
≤ 0 ,

because 1 − l/r ≤ 0. Substituting the optimal recombination radius (30) results in the
following recombination rate function:

ν̂(n, k) = n

n + k
.

Thus, uniform crossover with the above recombination rate makes the mean valueE{r} =
lν of the recombination radius equal to the optimal value (30). However, its variance σ 2(r) =
lν(1−ν) is generally not zero, meaning that the exact optimal value of recombination radius
is not guaranteed.

In the case of one-point crossover, the distribution of recombination radius is the Dirac
δl−i (r)with zero variance,where i ∈ [1, . . . , l] is the index of one-point crossover. Therefore,
if the index of one-point crossover is set to i = l − r̂ = �lk/(n + k)�, then it is feasible to
guarantee the optimal value given by (30). This could be the advantage of one-point crossover
over the uniform crossover. Interestingly, a process similar to one-point crossover is used in
nature to exchange genetic material between pairs of homologous non-sister chromatids.
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4 Discussion

We have analysed geometry and combinatorics of mutation and crossover operators in Ham-
ming spaces. The new formula for geometric probability (24) of crossover recombination of
two strings onto a sphere around an optimum now complements a similar formula (11) for
mutation that was derived previously in [2–5]. Combined with the information about specific
mutation and crossover operators (e.g. Examples 2, 8, 9) one can compute stochastic matri-
ces M and R to represent Markov operators, defined by (6) and (20), transforming distance
distributions p(t) := Pt {x ∈ S(�, n)} under mutation and recombination in a Hamming
space Hl

α . Their product together with the diagonal (l + 1) × (l + 1) matrix S representing
selection gives complete Markov evolution of distance distributions:

p(t) = (MRS)t p(0) , p(0) = P0 .

This opens up the possibility for computer simulations and numerical optimization of
long-term evolutionary dynamics under various control functions and strategies, such as the
variable mutation ratesμ(n) (e.g. as in (15)), recombination radii r(n, k) (e.g. as in (30)) and
pairing strategies (e.g. Examples 5, 6, 7). In some cases, analytic solutions are also possible,
such as the optimality conditions given in Propositions 2 and 3 for mutation (previously
presented in [3–5]) and in Propositions 7 and 8 for crossover recombination. It is important
to note, however, that such solutions that are optimal for these specific criteria may not be
optimal for other criteria (e.g. see the discussion in [36] or various optimality criteria and
constraints in [4]). Simulations using the aboveMarkov process can be used for optimization
of evolutionary dynamics over multiple generations and considering other characteristics,
such as the rate of convergence or the running time. The latter can be estimated as time to
absorption for stochastic matrix MRS by considering the optimum � ∈ Hl

α as an absorbing
state. Such a programme has already been realized in [4], but only for the mutation operator
M . This work extends the range of tools suitable for a more complete study. Future work
may consider potential applications to the run-time analysis of evolutionary algorithms and
optimization of mutation and recombination operators in more complex fitness landscapes
(i.e. when fitness is not the negative distance to optimum). Such analysis can be facilitated by
the formulae derived here and considering monotonic relations between fitness and distance
that can often be postulated [8].

Another interesting direction to explore is the interaction between mutation and crossover
operators. Our analysis suggests that mutation and crossover recombination may have differ-
ent and in some sense complementary properties. Mutation has the advantage that its range
is the entire space {1, . . . , α}l of strings. However, it lacks direction, and when strings are
closer to an optimum the majority of mutations are deleterious. Maximization of the proba-
bility of beneficial mutation requires that mutation rates decrease as strings evolve closer to a
fitness peak, which has the inevitable effect of slowing down the evolution. Recombination,
on the other hand, acts in a subspace defined by the current population. However, unlike
mutation, recombination can have a direction towards higher fitness, and it equalizes the
chances of beneficial and deleterious recombinations. It has properties, such as variance of
distance distribution, that are translation invariant. These observations suggest that mutation
can be more important for diversity and adaptation of the population that is far away from
the fitness peak. Once the population has evolved closer to the fitness peak and the mutation
rate reduced, recombination may become more important to maintain the rate of adaptation.
These hypotheses can be tested using simulations.
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It is important to emphasize that the theory and probability formulae presented here are
exact and not approximate or asymptotic. At the same time the model concerns a Markov
process with only l + 1 states (i.e. the range {0, . . . , l} of Hamming distance on Hl

α) and
square (l+1)×(l+1)matrices. Even though l can be large in some cases, this model is more
computationally tractable than other approaches, such as [37, 38] that usedMarkov processes
with states corresponding to all possible variable size populations of strings. Furthermore,
many properties can be derived from simulations with small l. In addition, the formulae for
the first two moments (i.e. (13), (28) for the means and (14), (29) for the variances) can be
used to infer some approximate properties. All formulae are valid for strings with arbitrary
alphabet size α ∈ N broadening their scope of applications to different areas including
biological systems.

Although the analysis presented here is based on information about Hamming distances
between strings, the conclusions can be translated into more practical or biologically relevant
notions of fitness and similarity. Previously we showed that fitness is related to distance from
an optimum at least in some neighbourhoods of a local optimum in a broad class of fitness
landscapes [8]. Theoretical predictions about optimal mutation rates were tested in compu-
tational experiments with transcription factor binding landscapes as well as experiments in
vivo with various microbes [10–12]. They discovered that mutation rates are strongly anti-
correlated with population density, which microbes can sense and that is related to biological
fitness (i.e. the replication rate). Thus, organisms may use a control strategy of mutation
parameters similar to that predicted by the theory in order to increase their adaptability. This
trait appears to exist across all domains of life [11]. It is reasonable to assume that similar
strategies may exist for controlling parameters of recombination operators. Testing these
hypotheses experimentally is an exciting prospect.

Appendix A Proofs

A.1 Proof of Lemma 1 for themean and variance of Hamming distance

Proof Using the definition of Hamming distance (1) as a sum of elementary distances 1 −
δxi yi ∈ {0, 1} we have

EP {d(x, y)} = EP

{
l∑

i=1

(1 − δxi yi )

}
=

l∑

i=1

EP {1 − δxi yi } ,

σ 2
P {d(x, y)} = EP

⎧
⎨

⎩

(
l∑

i=1

(1 − δxi yi )

)2
⎫
⎬

⎭ −
(
EP

{
l∑

i=1

(1 − δxi yi )

})2

=
l∑

i=1

EP {(1 − δxi yi )
2} +

l∑

i=1

l∑

j=1
j 	=i

EP {(1 − δxi yi )(1 − δx j y j )}−

−
(

l∑

i=1

EP {1 − δxi yi }
)2

,

wherewe used additivity of the expected value and the square of the sum formula:
(∑

i ai
)2 =∑

i a
2
i + 2

∑
i< j ai a j = ∑

i a
2
i +∑

i
∑

j 	=i ai a j . Noticing that (1− δxi yi )
2 = 1− δxi yi and
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denoting the average values of the expectations under summations by 〈Pi 〉 and 〈Pi j 〉 (see
their definitions in Lemma 1) we obtain the following formulae:

EP {d(x, y)} = l〈Pi 〉 ,

σ 2
P {d(x, y)} = l〈Pi 〉 + l(l − 1)〈Pi j 〉 − (l〈Pi 〉)2 .

��

The symbol 〈Pi 〉 introduced above is the average (over all positions i ∈ {1, . . . , l}) of the
probability that xi 	= yi . Indeed, the differences 1−δxi yi are non-zero (and equal to one) only
when xi 	= yi , and therefore the expectations EP {1 − δxi yi } are the probabilities that letters
xi 	= yi at positions i ∈ {1, . . . , l} (and these probabilities can be different for different i).

Similarly, 〈Pi j 〉 is the average of joint probability that xi 	= yi and x j 	= y j at two
different positions i 	= j (there are l(l − 1) off-diagonal elements). Indeed, the products
(1−δxi yi )(1−δx j y j ) are non-zero only when both xi 	= yi and x j 	= y j , and the expectations
EP {(1 − δxi yi )(1 − δx j y j )} are the corresponding joint probabilities.

A.2 Proof of Lemma 2 for intersection of spheres inHl
˛

Proof A substitution of letter xi at position i ∈ {1, . . . , l} may result in one of three possi-
bilities:

• Letter xi 	= �i is substituted to yi = �i resulting in a beneficial substitution. Such
substitutions can only occur in n = d(�, x) letters xi 	= �i . Denoting by r+ the total
number of beneficial substitutions gives

( n
r+
)
combinations.

• Letter xi = �i is substituted to any of α − 1 letters yi 	= �i resulting in a deleterious
substitution. Such substitutions can only occur in l − d(�, x) = l − n letters xi =
�i . Denoting by r− the total number of deleterious substitutions gives (α − 1)r−

(l−n
r−
)

possibilities.
• Letter xi 	= �i is substituted to one of the remaining α − 2 letters yi 	= �i resulting in

a neutral substitution. Such substitutions can only occur in n = d(�, x) letters xi 	= �i

minus the number r+ of beneficial substitutions. Denoting by r0 the total number of
neutral substitutions gives (α − 2)r0

(n−r+
r0

)
possibilities.

For specific values of r+, r− and r0, the total number of combinations is

(α − 2)r0
(
n − r+
r0

)
(α − 1)r−

(
l − n

r−

)(
n

r+

)
.

By (4) and (5), the values of r− and r0 are related to r+ ∈ [0, r ]:

r− = r+ − (n − m) ,

r0 = r − (r+ + r−) = r − 2r+ + (n − m) .

Formula (10) is obtained by summing over all feasible values of r+ subject to constraints
r− ≥ 0 and r0 ≥ 0. ��
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A.3 Proof of Proposition 1

Proof Here we use formulae (2) and (3) with the following average probabilities:

〈Pi 〉 := P{yi 	= �i | x ∈ S(�, n), y ∈ S(x, r)} ,

〈Pi j 〉 := P{yi 	= �i ∧ y j 	= � j | i 	= j, x ∈ S(�, n), y ∈ S(x, r)} ,

where the conditions are defined by the fact that string y ∈ S(x, r) ⊂ Hl
α is obtained from

x ∈ S(�, n) by a substitution of d(x, y) = r letters. Indices i and j ∈ {1, . . . , l} are positions
of letters in the strings x = (x1, . . . , xl), y = (y1, . . . , yl) and � = (�1, . . . ,�l). For each
position i ∈ {1, . . . , l} there are three mutually exclusive possibilities for event yi 	= �i :

• Letter xi 	= �i is not substituted, so that yi = xi 	= �i . The number of letters xi 	= �i

is n = d(�, x), and there are l − r letters that remain not substituted in y, which means
that the corresponding probability is (n/l)(1 − r/l).

• Letter xi 	= �i is substituted by yi 	= �i , yi 	= xi . There are α − 1 letters in the alphabet
not equal to �i , and there are α − 2 remaining possibilities for yi 	= �i . Given that
there are n = d(�, x) letters xi 	= �i and r letters are substituted, the corresponding
probability is (n/l)[(α − 2)/(α − 1)](r/l).

• Letter xi = �i is substituted by any other letter yi 	= �i . The number of letters xi = �i

is l − n = l − d(�, x), and there are r letters that are substituted, which corresponds to
the probability (1 − n/l)(r/l).

Adding the above probabilities for disjoint events gives the desired average probability:

〈Pi 〉 = n

l

(
1 − r

l

)
+ n

l

(
α − 2

α − 1

)
r

l
+
(
1 − n

l

) r

l
.

Because 〈Pi 〉 is the average probability across all positions i ∈ {1, . . . , l}, its value is the
same for all i , and the expected value EP {m | n, r} can be computed as l〈Pi 〉. Its expression
can be simplified as follows:

l〈Pi 〉 = n

(
1 − 1

α − 1

r

l

)
+ (l − n)

r

l
.

The expression above can also be transformed into formula (13).
The average joint probability 〈Pi j 〉 := P{yi 	= �i ∧ y j 	= � j | i 	= j, n, r} is factorized

into the product P{yi 	= �i | n, r}P{y j 	= � j | yi 	= �i , i 	= j, n, r}, where the first
probability for the first event zi 	= �i is the average probability 〈Pi 〉 derived above. The
second is the average conditional probability of the second event z j 	= � j for j 	= i (and
conditioned on the first event zi 	= �i ). This conditional probability can be determined from
the following considerations.

For each of the three possibilities for yi 	= �i in the string of length l, there are three
possibilities for y j 	= � j in the remaining string of length l − 1. Thus, there are 3 × 3 = 9
joint events, the probabilities of which are defined similarly, but using numbers n − 1 or n
and r−1 or r depending on the type and position of the first event yi 	= �i . Thus, the product

123



R. V. Belavkin

l(l − 1)〈Pi j 〉 is as follows:

l(l − 1)〈Pi j 〉 = n
(
1 − r

l

) [
(n − 1)

(
1 − 1

α − 1

r

l − 1

)
+ (l − n)

r

l − 1

]

+n

(
α − 2

α − 1

)
r

l

[
(n − 1)

(
1 − 1

α − 1

r − 1

l − 1

)
+ (l − n)

r − 1

l − 1

]

+(l − n)
r

l

[
n

(
1 − 1

α − 1

r − 1

l − 1

)
+ (l − 1 − n)

r − 1

l − 1

]
.

Formula (14) for the variance is obtained by substituting the expressions for l〈Pi 〉 and
l(l − 1)〈Pi j 〉 into equation l〈Pi 〉 + l(l − 1)〈Pi j 〉 − (l〈Pi 〉)2. ��

A.4 Proof of Proposition 4

Proof Let us denote by r ′ = l − r the recombination radius of the dual recombination
z′, and let r ′+, r ′− and r ′

0 be respectively the numbers of beneficial, deleterious and neutral
substitutions into x . Because the dual recombination is a substitution of the remaining l − r
letters, we have

r+ + r ′+ = h+ , r− + r ′− = h− .

Using the above equations and (17), (19) we have

r ′+ − r ′− = h+ − h− − (r+ − r−)

= (n − k) − (n − m) .

On the other hand, by analogy with (17), we have

r ′+ − r ′− = n − m′ . (31)

Therefore, n − k − (n − m) = m − k = n − m′. ��

A.5 Proof of Proposition 5

Proof Here we use formulae (2) and (3) with the following average probabilities

〈Pi 〉 := P{zi 	= �i | x ∈ S(�, n), y ∈ S(�, k), d(x, y) = h, r} ,

〈Pi j 〉 := P{zi 	= �i ∧ z j 	= � j | i 	= j, x ∈ S(�, n), y ∈ S(�, k), d(x, y) = h, r} ,

where the conditions are defined by the fact that string z ∈ S(�,m) ⊂ Hl
α is obtained from

x ∈ S(�, n) by a substitution of r ∈ [0, l] letters from string y ∈ S(�, k) ∩ S(x, h). Indices
i and j ∈ {1, . . . , l} are positions of letters in the strings. For each position i ∈ {1, . . . , l}
there are two mutually exclusive possibilities for zi 	= �i :

• Letter xi 	= �i is not substituted by yi , so that in the offspring zi = xi 	= �i . The number
of letters xi 	= �i is n = d(�, x), and there are l − r letters that remain not substituted
in z, which means that the corresponding probability is (n/l)(1 − r/l).

• Letter xi = �i is substituted by letter yi 	= �i , so that in the offspring zi = yi 	= �i .
The number of letters yi 	= �i is k = (�, y), and there are r letters that are substituted,
which corresponds to probability (k/l)(r/l).
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Adding the above probabilities for disjoint events gives the desired average probability:

〈Pi 〉 = n

l

(
1 − r

l

)
+ k

l

r

l
.

Because 〈Pi 〉 is the average probability across all positions i ∈ {1, . . . , l}, its value is the
same for all i , and the expected value EP {m | n, k, h, r} can be computed as l〈Pi 〉:

l〈Pi 〉 = n
(
1 − r

l

)
+ k

r

l
.

The above expression gives formula (28).
The average joint probability 〈Pi j 〉 := P{zi 	= �i ∧ z j 	= � j | i 	= j, n, k, h, r} is

factorized into the product P{zi 	= �i | n, k, h, r}P{z j 	= � j | zi 	= �i , i 	= j, n, k, h, r},
where the first probability for the first event zi 	= �i is the average probability 〈Pi 〉 derived
above. The second is the average conditional probability of the second event z j 	= � j for
j 	= i (and conditioned on the first event zi 	= �i ). This conditional probability can be
determined from the following considerations.

Let us decompose each of the two cases of the first event zi 	= �i into three subcases
resulting in 2×3 = 6mutually exclusive subcases of event zi 	= �i . These subcases were not
considered for the probability 〈Pi 〉, because it concerns only one index i . When two indices i
and j 	= i are considered for the joint probability 〈Pi j 〉, these subcases are important, because
they influence the numbers that are required for the probability of the second event z j 	= � j .

First, let us consider when any of n letters xi 	= �i are not substituted by yi . There are
three subcases for such non-substitutions. They can be among

1. h+ letters yi = �i (i.e. some of h+ possible beneficial substitutions do not occur).
2. h0 letters yi 	= �i , yi 	= xi (i.e. some of h0 neutral substitutions do not occur).
3. n − h0 − h+ identical letters yi = xi 	= �i .

If a non-substitution occurs at position i , then the number n reduces to n − 1, but the
recombination radius r remains the same. The number k of letters yi 	= �i remains the same
in the first subcase (because xi 	= �i was not substituted by one of l − k letters yi = �i ),
but it reduces to k − 1 in the last two subcases. The length l of the remaining string is l − 1.

Second, let us consider when letters xi are substituted by any of k letters yi 	= �i . Again,
there are three subcases for such substitutions. They can be among

1. h− letters yi 	= �i (i.e. some of h− possible deleterious substitutions occur).
2. h0 letters yi 	= �i , yi 	= xi (i.e. some of h0 neutral substitutions occur).
3. k − h0 − h− identical letters yi = xi 	= �i .

Note that k − h0 − h− = n − h0 − h+, which follows from h+ − h− = n − k. If a
substitution by letter yi 	= �i occurs at position i , then the number k reduces to k − 1, and
the recombination radius r reduces to r − 1. The number n of letters xi 	= �i remains the
same in the first subcase (because one of l − n letters xi = �i was substituted by yi 	= �i ),
but it reduces to n − 1 in the last two subcases. The length l of the remaining string is l − 1.

For each of the six subcases, there are two possibilities for the second event z j 	= � j in
the remaining string of length l − 1, so that there are 6 × 2 = 12 joint events. Note that the
values h+, h0 and h− are generally random and related by (18) and (19). Thus, initially we
derive the formula for the product l(l − 1)〈Pi j 〉 assuming that specific values of h+, h0 and
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h− have been fixed:

l(l − 1)〈Pi j 〉 =
(
1 − r

l

){
h+

[
(n − 1)

(
1 − r

l − 1

)
+ k

r

l − 1

]

+h0

[
(n − 1)

(
1 − r

l − 1

)
+ (k − 1)

r

l − 1

]

+(n − h0 − h+)

[
(n − 1)

(
1 − r

l − 1

)
+ (k − 1)

r

l − 1

]}

+r

l

{
h−

[
n

(
1 − r − 1

l − 1

)
+ (k − 1)

r − 1

l − 1

]

+h0

[
(n − 1)

(
1 − r − 1

l − 1

)
+ (k − 1)

r − 1

l − 1

]

+(k − h0 − h−)

[
(n − 1)

(
1 − r − 1

l − 1

)
+ (k − 1)

r − 1

l − 1

]}

The formula above contains six lines corresponding to six subcases of the first event
zi 	= �i : three non-substitutions of xi 	= �i and three substitutions of xi = �i . Expressions
in square brackets on each line correspond to two cases of the second event z j 	= � j , j 	= i :
non-substitutions of x j 	= � j and substitutions of x j = � j . Factoring and noticing that
h+ + h0 + n − h0 − h+ = n and h− + h0 + k − h0 − h− = k we obtain:

l(l − 1)〈Pi j 〉=
(
1 − r

l

){
n

[
(n − 1)

(
1 − r

l − 1

)
+ (k − 1)

r

l − 1

]
+ h+

r

l − 1

}

+r

l

{
k

[
(n − 1)

(
1 − r − 1

l − 1

)
+(k − 1)

r − 1

l − 1

]
+h−

(
1 − r − 1

l − 1

)}

The right-hand-side of the above equation can be written as

(
1 − r

l

){
n

[
(n − 1)

(
1 − r − 1

l − 1

)
+ (k − 1)

r − 1

l − 1

]
+ n

(
k − 1

l − 1
− n − 1

l − 1

)
+ h+

r

l − 1

}

+r

l

{
k

[
(n − 1)

(
1 − r − 1

l − 1

)
+ (k − 1)

r − 1

l − 1

]
+ h−

(
1 − r − 1

l − 1

)}
,

which allows us to factor the members as follows:

[(
1 − r

l

)
n + r

l
k
] [(

1 − r − 1

l − 1

)
(n − 1) + r − 1

l − 1
(k − 1)

]
+

+
(
1 − r

l

)( n

l − 1
(k − n) + h+

r

l − 1

)
+ r

l
h−

(
1 − r − 1

l − 1

)
.

Substituting h− = h+ + (k − n) the expression for l(l − 1)〈Pi j 〉 becomes

[(
1 − r

l

)
n + r

l
k
] [(

1 − r − 1

l − 1

)
(n − 1) + r − 1

l − 1
(k − 1)

]
+

+
(
1 − r

l

) (n + r)(k − n) + 2rh+
l − 1

.
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It can now be combined with the expression for l〈Pi 〉 in equation l〈Pi 〉 + l(l − 1)〈Pi j 〉 −
(l〈Pi 〉)2 to derive the variance formula with fixed h+:

σ 2
P {m | n, k, h, r , h+} = l2h+ − k2 + lk + 2nk − ln − n2

l2(l − 1)
r(l − r)

= l[2h+ − (n − k)] − k2 + 2nk − n2

l2(l − 1)
r(l − r)

=
[
2h+ − (n − k) − (n − k)2

l

]
r(l − r)

l(l − 1)

=
[
h − h0 − (n − k)2

l

]
r(l − r)

l(l − 1)
.

Formula (29) for the variance is obtained by averaging over all possible values of h+ or
h0 = h − 2h+ + n − k, which means that they are replaced by their expected values 〈h+〉 or
〈h0〉 := E{h0 | n, k, h} with respect to P(h+ | n, k, h) (27). ��

A.6 Proof of Proposition 6

Proof Looking at factorization (25) of probability P(m | n, k, h, r), one can see that proba-
bility P(h+ | n, k, h) does not influence the result, because it does not include variables m
and r . Thus, we only need to consider probability P(m | n, k, h, r , h+) given by (26). Using
symmetry of binomial coefficients

(l
r

) = ( l
l−r

)
, one can see that

(
l − h+ − h−
r − r+ − r−

)(
h−
r−

)(
h+
r+

)
=

(
l − h+ − h−
r ′ − r ′+ − r ′−

)(
h−
r ′−

)(
h+
r ′+

)
,

where r ′ = l − r , r ′+ = h+ − r+ and r ′− = h− − r−. Note that r ′ = l − r is recombination
radius of the dual recombination z′ = (1 − λ)y ⊕ λx , and r ′ = r ′+ + r ′− + r ′

0. Therefore,
P(m | n, k, h, r , h+) = P(m′ | n, k, h, l − r , h+), where m′ = n + k −m by Proposition 4.
��
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