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 

Abstract— This paper presents a new method for selecting a 

patient specific forward model to compensate for anatomical 

variations in electrical impedance tomography (EIT) 

monitoring of neonates. The method uses a combination of shape 

sensors and absolute reconstruction. It takes advantage of a 

probabilistic approach which automatically selects the best 

estimated forward model fit from pre-stored library models. 

Absolute/static image reconstruction is performed as the core of 

the posterior probability calculations. The validity and 

reliability of the algorithm in detecting a suitable model in the 

presence of measurement noise is studied with simulated and 

measured data from 11 patients. 

The paper also demonstrates the potential improvements on 

the clinical parameters extracted from EIT images by 

considering a unique case study with a neonate patient 

undergoing computed tomography imaging as clinical 

indication prior to EIT monitoring. Two well-known image 

reconstruction techniques, namely GREIT and tSVD, are 

implemented to create the final tidal images. The impacts of 

appropriate model selection on the clinical extracted parameters 

such as center of ventilation and silent spaces are investigated. 

The results show significant improvements to the final 

reconstructed images and more importantly to the clinical EIT 

parameters extracted from the images that are crucial for 

decision-making and further interventions. 

 

Index Terms— Electrical impedance tomography, model 

selection, neonatal chest EIT, patient-specific prior model, 

thorax modelling. 

I. INTRODUCTION 

LECTRICAL impedance tomography (EIT) is a non-

invasive, radiation-free technique that provides an image 

of the electric conductivity of  an object by injecting 

small currents (≤5 mA rms) through electrodes placed on the 

object’s boundary and measuring the resulting potentials  
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from the same or other electrodes [1]. EIT has been 

successfully used to image regional changes in pulmonary 

ventilation and perfusion in real time. The images do not 

provide static structural equivalent to magnetic resonance 

imaging (MRI) or computed tomography (CT) of the lung but 

yield the air volume change in the lung with high temporal 

resolution (up to 120 frames per second [2]). EIT offers the 

potential for continuous bedside respiratory monitoring. 

Studies in newborn infants and children have demonstrated 

quantitatively identifiable changes in regional lung aeration 

and ventilation following alterations to respiratory support 

and interventions such as a recruitment maneuver, surfactant 

administration or nursing procedures [3]-[4]. 
Monitoring neonatal respiratory is crucial since respiratory 

disorders in such early stage of life are the most frequent 

causes of admission to neonatal intensive care both in term 

and pre-term neonates. Unlike adults, newborns have limited 

non-hazardous medical examination options that provide 

regional pulmonary information. Moreover, studying this age 

group is more challenging due to high breathing rate and 

patient movements, lack of co-operation and vulnerable skin. 

EIT has the potential to assess lung air distribution in real 

time as guidance for further clinical interventions. 

EIT image is generated based on solving an ill-posed 

inverse problem. A prior model indicating the insight 

regarding the internal resistivity map and the enclosing 

contour of the domain should be assumed to reach a 

meaningful solution. The closer the prior model is to the 

actual patient's anatomical structure, the higher will be the 

quality of the final reconstructed image [5]. Each patient has 

a unique boundary shape and anatomical internal organ 

distribution. In neonates, these differences are related to their 

developmental status, gestational age [6] and in some cases, 

to congenital disorders. Furthermore, the knowledge of 

position and contour map of the lungs is crucial to the 
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calculations needed for computing certain parameters from 

the reconstructed images, for example, silent spaces [7] 

which indicate the parts of the lung with low tidal volume 

changes using a fixed, predefined map of the lung contours. 

In an ideal case, such information for each particular patient 

would be readily available. However, the potential permanent 

hazardous radiation effects of the conventional scanning 

methods like CT make this information very rare [8].  

To address this problem, this paper presents a new approach 

that improves the use of EIT for monitoring neonatal lung 

ventilation by individually estimating the patient model. The 

approach can be considered as a calibration step prior to the 

desired final dynamic imaging reconstruction of the lung 

volume changes. 

The rest of the paper is organized as follows. Section II 

describes the proposed method for estimating the patient 

model. The results in Section III examine in a quantitative 

manner the performance of the individualized model 

estimation on the clinical parameters. Discussion of the 

results and concluding remarks are detailed in Section IV. 

II. METHOD 

The method developed in this work for creating a patient-

specific prior model consists of three stages; (1) forming a 

general homogeneous 2D model, (3) solving an inverse 

problem to reconstruct the image by means of absolute 

imaging, and (3) using the obtained results from the previous 

step to decide which model is nearest in approximation to the 

patient model and updating the prior inverse model 

accordingly. The updated model can then be used for image 

reconstruction/parameter extraction, applying various 

difference imaging algorithms. 

A. General Model 

In the case of chest EIT, the prior knowledge is twofold; (1) 

information concerning the boundary shape of the patient's 

thorax and electrode positions, and (2) insight about the 

spatial distribution of the internal organs. The former point 

was previously addressed with the methods developed in [9], 

[10] [11]; however, they assume isotropic conductivities. 

Even under such an assumption the boundary shape 

estimation cannot be fully achieved [12]. Therefore, in this 

study the boundary detection is performed externally by 

inserting gravity vector sensors (e.g. accelerometers), 

embedded in the belt of electrodes. The feasibility of 

accurately detecting the outer boundary of different shapes, 

including possible convexities and concavities (similar to 

those found in thorax boundary) using an array of 

accelerometers has been demonstrated [13]. Figure 1 shows 

an example of a phantom representing a sample outer thorax 

shape, detected by implementing 8 and 16 accelerometer 

sensors. 

With a fixed number of electrodes embedded in the EIT belt 

(wrapped around the subject) and known chest perimeter at 

the level of the belt, the accelerometers can provide the 

position of the electrodes in addition to the boundary shape. 

Here, 16 accelerometers equally distributed throughout the 

belt starting from the position of the first electrode are 

assumed. The authors’ primary investigations in [13] showed 

that 16 sensors are sufficient for a reasonable boundary 

detection in neonatal dimensions. 

  
(a) (b) 

Fig. 1. Detecting thorax like, outer boundary shape, (a) the experiment setup, 

(b) the detected and reconstructed boundary shape.   

The more challenging category is the second case, 

involving the insight regarding position, size and shapes of 

the internal tissues. These could be achieved by imaging 

techniques such as CT or MRI. However, these imaging 

techniques are very rarely used in neonates; CT poses high 

risks for neonates and MRI, despite being non-hazardous, is 

expensive, time consuming, it requires patient transport, and 

often needs sedation in neonatal cases.  

 Since at this stage there is no such insight regarding the 

inside conductivity distribution, atwo-dimensional (2D) 

general model is defined as a homogeneous domain by 

assigning a uniform electrical conductivity enclosed by a 

boundary estimated from the accelerometer readings. This 2D 

model represents the cross-section of the thorax at the plane 

of intersection with the embedded electrodes in the belt. 

Clinicians are instructed to position the EIT belts at a position 

just below the armpits, close to the nipple line equivalent to 

the 4-5th intercostal space of the rib cage [14]. 

B. Image Reconstruction 

1) Forward Problem 

The forward problem involves finding the voltages on the 

electrodes attached to the boundary 𝜕Ω on the closed domain 

Ω ∈ R𝑛 with 𝑛 ∈ {2, 3} . The known current of 𝐼𝑙  is injected 

through the lth electrode creating potential differences 

between a set of electrode pairs. Various stimulation and 

measurement patterns can be applied and are studied in 

literature [15]. Equation (1) represents the main governing 

equation assuming there is no current source/sink within the 

domain. 

where  𝜎(𝐱) and 𝑢(𝐱) indicate the conductivity and potential 

distribution as a function of spatial coordinate 𝐱 in the domain 

Ω In practice the forward problem is often solved 

numerically to discover the potential distribution using finite 

element methods (FEM) [16].The electrode potentials 𝑈𝑙 are 

computed using a complete electrode model (CEM). The 

detailed derivation of CEM can be found in [17] and [18]. 

However, the reverse of this problem is of interest here, as 

one seeks to find the conductivity distribution by measuring 

the potentials on the electrodes. 

2) Inverse Problem 

There are two inverse problems (i.e. image reconstructions) 

in this work. The main one explained in this section is limited 

to be the absolute/static imaging. The second inverse problem 

will appear at the final step after the prior model is updated 

and unlike the former one is not restricted to a specific 

reconstruction algorithm. As a choice among  difference 

imaging algorithms, here the GREIT [19], [20] and truncated 

singular value decomposition (tSVD) [21] algorithms are 

applied. 

∇. (𝜎(𝐱)∇𝑢(𝐱)) = 0 𝐱 ∈ Ω (1) 



 The absolute imaging technique, amid implementing 

nonlinear methods [22], has a higher computational overhead 

relative to the linear approximation based difference imaging 

methods but it offers an improved estimation of the 

conductivity. In addition, since this reconstruction is 

performed in 2D as an initial step to create a conductivity map 

for finding the matching model from model library, 

computational cost is not a concern. The other well-known 

constraint of this imaging technique of being sensitive to the 

boundary shape and the electrode positions has already been 

addressed by the aid of accelerometers. In addition, the 

problem caused by electrode detachment and related 

approaches to compensate for the erroneous data [23] are not 

applicable here since the method is performed as a calibration 

step at the beginning of the recording when the electrodes 

have good contacts. The majority of the commercially 

available EIT monitoring devices (including the one used in 

this work) are capable of notifying the operator of any 

missing/detached electrodes, thus can be adjusted prior to 

running the algorithm. 

The absolute imaging provides information regarding the 

distribution of conductivities at a certain time instant. This, 

will later be the reference image used by the model selection 

tool to obtain the best match from the library. The main 

advantage of using absolute imaging is that it provides 

specific conductivity distribution, unlike difference imaging 

techniques which provide information related to the change 

in conductivity. This is crucial in the proposed method as 

there may be regions in the lungs exhibiting no or very small 

ventilation, such as in overdistended or atelectatic regions. 

Consequently, in such cases there will be no significant 

change in conductivity within those regions, making them 

invisible to difference imaging. 

For the purpose of obtaining a solution to the absolute 

imaging problem, minimization of the error between the 

surface measured voltages 𝑉 and the predicted voltages 𝑈 is 

considered to find the conductivity estimations �̂� in the 

domain. The minimization may be done in the least squares 

sense. Considering the potential 𝑈 is not a linear function of 

conductivity, one solution to this minimization problem, can 

be the use of the iterative Gauss-Newton method [24]. 

In order to condition this ill-posed inverse problem [25] 

(since more than one conductivity map can result in the same 

surface measurements) the Tikhonov Regularization term is 

added to the right-hand side of (2), thus 

�̂� = arg min
𝜎>0

{‖𝑉 − 𝑈(𝜎)‖2
2 + 𝜆2‖∆𝜎‖2

2} (2) 

where �̂� is the estimated conductivity, the second term in the 

minimization argument acts as a penalty function with ∆ is 

the differential operator. 𝑈(𝜎) and 𝑉 denote the predicted and 

measured voltages, respectively. 

It should be noted that at this phase, the main task is to 

discover the structural anatomy of the internal tissues 

including possible pathological changes. Such capability of 

distinguishing different tissues in absolute imaging, can be 

improved using multi-frequency absolute imaging which 

exploits the dependency of tissue impedance on frequencies. 

The improvements achieved by implementing multi-

frequencies has been demonstrated on different phantoms 

[26] and in human subjects [27]. It has been shown that even 

the permittivity changes become significant at certain 

frequencies [28].  

. The clinical EIT system used to collect neonatal EIT data 

in the CRADL Project (SenTec BB2, Landquart, Switzerland) 

was only capable of measuring one frequency at a time. Due 

to this constraint the validation of the proposed approach was 

restricted to single frequency mode (200 kHz). Considering 

the frequency used is below the MHz band, based on 

simulations done in [28], the real parts of the measurements 

were used to demonstrate that the proposed approach is 

effective even with the aforementioned hardware limitations. 

After the estimated conductivity distribution is computed, the 

next step involves finding which of the pre-defined models in 

the model library could best describe the achieved solution. 

C. Model Selection 

The commercially available neonatal EIT belts are not 

equipped with any mechanism to keep them fixed in their 

initial position [7][29]. Hence, in practice they are subject to 

possible rotation and sliding in the craniocaudal direction as 

the patient moves [30]. Slight movements of the belt may 

cause significant variations in internal organ distribution due 

to the considerably small dimensions of neonates, especially 

if born premature. As an example Fig. 2 depicts a neonatal 

thorax sliced transversally at two transverse parallel planes 

spaced 1.2 cm apart and the corresponding cross-sections. 

The slicing planes are selected to be above (7.5 mm) and 

below (4.5 mm) of the originally advised position of the EIT 

belt. 

   

(a) (b) (c) 

Fig. 2. Example of changes in internal organ contours in craniocaudal 

direction, (a) the transverse parallel planes spaced 1.2 cm apart, (b) 
corresponding CT-scan at 7.5 mm above the original EIT belt level, (c) at 4.5 

mm below. 

This is the main reason the library models, despite 

occupying more memory space compared to their 2D 

versions, are designed in 3D. Based on the information from 

the accelerometers the relative movement of the belt could be 

tracked and therefore offering the ability to be sliced at the 

desired level. This provides flexibility to the algorithm to 

provide better cross-sectional maps in case the belt is moved 

from its original position.  

The procedure of model selection consists of three sub-

steps. Initially the library models (in 3D meshes) are 

transversally cut at the level corresponding to electrodes’ 

plane. The resultant 2D cross-sections act as representatives 

for each library model. Since the outer boundary shape of the 

patient was previously estimated and hence known, these 

representatives should be further amended and fitted into the 

estimated patient thorax shape. In the next step, using the 

reconstructed image generated from the absolute imaging in 

Section II.B.2, posterior probabilities are calculated and 

assigned to each model based on how likely each of the 

library models could be the model responsible for the 

observed data. The details of these steps are explained as 

follows. 

1) Scaling and Placement 

Considering the potential anatomical varieties of neonatal 

thorax due to disorders, possible abnormally developed 

organs or simply biological differences among patients, no 

specific pre-assumptions regarding the position and 

size/shape of internal organs can be made. Therefore, to 



customize the potential library models to meet the individual 

characteristics of the patient, scaling the predefined models 

to the actual patient size is required. This can be achieved 

using the chest circumference of the patient as the scaling 

indicator. As the outer shape and consequently the chest 

circumference of the patient at the level of belt are known, the 

models from library are scaled accordingly to the ratio of the 

circumferences of the newly cut 2D slices to the known 

boundary shape of the patient. 

Subsequently the scaled, cross-sections of organs should be 

positioned in the outer boundary shape of the patient. The 

centroid of the thorax cross-section is used as the reference 

point to have a consistent placement of the internal organs. 

As stated the algorithm is designed to run as an initial 

calibration step after the belt is fastened and typically there is 

no rotation and the patient is positioned supine; however, in 

case of improper belt placement the algorithm is capable of 

estimating and compensating the rotation using a line 

segment drawn across the widest part of the cross-section. 

These steps are shown in Fig. 3 where Fig. 3(a) 

demonstrates the formation of boundary using bi-spline with 

16 accelerometers and Fig. 3(b) plots the created reference 

coordinates superimposed on the actual CT-scan. 

In order to have fair comparison between the library 

models, all the scaled internal organs are positioned and 

rotated with the same strategy. Ultimately, the resulting slices 

representing each model are turned to a pixelated grid for 

further computations. 

  
(a) (b) 

Fig. 3. (a) Estimation of thorax shape using 16 accelerometers, (b) the 

superposition of the created reference coordinates on the corresponding CT-
scan. 

Fig. 4 shows plots of the cross-sectional CT-scans of 3 

samples from the library and the corresponding generated 2D 

models based on their internal organ distribution and the 

common outer boundary of the patient at their final pixelated 

forms. Note that all the models share the same outer 

boundary as the considered homogeneous general model but 

are different in the internal organ distribution. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4.  Scaling and positioning of internal tissues based on models into 
thorax contour; (a)-(c) CT-scan of 3 patients at the top panels, (d)-(f) with 

corresponding pixelated internal tissues and fixed outer boundary in the 

bottom panels 

 

2)  Selection Criteria 

At this stage, a quantitative scale should be defined to 

evaluate the ability of each model to describe the resulting 

image from the absolute imaging technique. Unfortunately, 

due to the low spatial resolution of EIT, specifically in 

detecting the exact boundaries of organs, advanced well-

known shape matching algorithms such as context shape [31], 

cannot be implemented in this scenario. Therefore, a 

Bayesian probabilistic approach is applied here [32]. The 

concept is to assign posterior probabilities to each library 

model 𝑀𝑗 based on how likely this model could be the actual 

patient model, responsible for the observed reconstructed 

image 𝒪 created by the absolute imaging technique. The 

model with the highest posterior probability is then selected 

as the match for the true patient model. 

Using Bayesian theorem and assuming N number of models 

in the library, the posterior probability of model 𝑀𝑗 given the 

reconstructed image 𝒪 can be calculated as 

𝑃(𝑀𝑗|𝒪) =
ℒ(𝑀𝑗 , 𝒪)Π(𝑀𝑗)

∑ 𝑃(𝒪|𝑀𝑗)Π(𝑀𝑗)𝑁
𝑗=1

. (3) 

Π(𝑀𝑗) is the prior probability of model j being selected. At 

the outset it is assumed that the library models are initially, 

equally probable. However, this provides the opportunity to 

include any primal guess or even diagnosis in the model 

selection procedure by assigning higher prior probability to a 

specific model in the library relative to the other existing 

members. The likelihood ℒ indicates in case the model 𝑀𝑗 is 

selected, how likely it could produce the observed data 𝒪. 

The likelihood is computed based on the reconstructed image 

from absolute imaging step, previously performed using the 

general homogeneous model. 

The total thorax pixels from the homogeneous model are 

divided by the bisector line drawn previously and are shown 

in Fig. 3(b) as two parts Ψ𝑙  and Ψ𝑟  denoting left and right half 

of the thorax cross section, respectively. Within each section 

Ψ∗, the pixels with their estimated conductivity values, �̂�, 

greater than the conductivity range mean value (mid-range 

value) are discarded as they present undesired highly 

conductive regions. The reader should keep in mind as 

absolute imaging is applied the values are all positive. The 

kept pixels (low relative conductivities) which indicate 

possible lung regions, are grouped into two categories based 

on their planar coordinate positions. These pixels are stored 

into sets S𝑙, in case they intersect with Ψ𝑙  and S𝑟  otherwise. 

Each S∗ set will have two disjoint subsets for every model 

in the library. The subset which is formed by the pixels 

confined within the lung contours of the jth model, defined as 

ϕ∗𝑗 and the subset Λ∗𝑗 represent the pixels not enclosed by 

the lung contours. These can be mathematically expressed as 

{

ϕ𝑙𝑗

Γ𝑙𝑗

Λ𝑙𝑗

 

= 𝑀𝑗  ∩ Ψ𝑙 , 

= ϕ𝑙𝑗 ∩  𝑆𝑙 , 

= 𝑆𝑙  −  ϕ𝑙𝑗 , 

ϕ𝑟𝑗 

Γ𝑟𝑗 

Λ𝑟𝑗  

= 𝑀𝑗 ∩  𝛹𝑟

= 𝜙𝑟𝑗 ∩  𝑆𝑟

= 𝑆𝑟  −  𝜙𝑟𝑗  
𝑗 = 1, ⋯ , 𝑁. (4) 

The likelihood can be defined as a function of the models. 

This function peaks at the model 𝑀𝑗 which is able to enclose 

most of sets S∗, hence number of pixels become maximum in  

Γ∗𝑗 and minimum in Λ∗𝑗 while having the least lung areas ϕ∗𝑗.  

Furthermore, assuming statistical independence of the left 

and right lungs for each model, the likelihood for model 𝑀𝑗 



can be written as 

  

ℒ(𝑀𝑗 , 𝒪) = (
∑ 𝛿𝐱 (𝐱−𝐱Γ𝑙𝑗

)

∑ 𝛿(𝐱−𝐱ϕ𝑙𝑗
)𝐱
 −

∑ 𝛿(𝐱−𝐱Λ𝑙𝑗
)𝐱

∑ (𝛿(𝐱−𝐱Ψ𝑙
)−𝛿(𝐱−𝐱ϕ𝑙𝑗

))𝐱
)  

 

(5) 

 

 
∙ (

∑ 𝛿𝐱 (𝐱−𝐱Γ𝑟𝑗
)

∑ 𝛿(𝐱−𝐱ϕ𝑟𝑗
)𝐱
 −

∑ 𝛿(𝐱−𝐱Λ𝑟𝑗
)𝐱

∑ (𝛿(𝐱−𝐱Ψ𝑟)−𝛿(𝐱−𝐱ϕ𝑟𝑗
))𝐱

). 

The first term on the right hand-side of (5) concerns the left 

lung (sub-indexed l) and the second term is dedicated to the 

right lung (sub-indexed r). x represents the pixel spatial co-

ordinates within the grid of the same size of pixelated image 

𝒪 and 𝛿(𝐱) is a 2D discrete Kronecker delta function with 

{
𝛿(𝐱) = 1

𝛿(𝐱) = 0
 

x = (0,0) 
(6) 

Otherwise. 

Inserting (5) in (3), the posterior probability of each model 

can be calculated. Consequently, the best match will be 

selected as j which maximizes the posterior probability of 𝑀𝑗. 

Selected Model =  arg max
𝑗∈{1,2,…,𝑁}

{𝑃(𝑀𝑗|𝒪)}. (7) 

Subsequent to the new information regarding the possible 

internal organ distribution, the prior model can be updated. 

3) Updating Prior Model 

As mentioned earlier, the final reconstruction technique 

which follows the updated prior model, is not required to be 

limited to any specific method. In addition, since the possible 

internal boundaries are discovered, the initial background 

conductivities can be assigned. This causes the updated prior 

model to be nonhomogeneous aiding reconstruction of 

images containing less artefacts and hence less misleading in 

regards to clinical interpretation [33].  

Currently, commercially available EIT devices display the 

reconstructed and functional EIT images in 2D plane 

corresponding to the plane of electrodes and consequently the 

clinically crucial parameters are extracted according to 

reconstructed  2D images [34]. However, some 

reconstruction algorithms, namely GREIT, are constrained to 

have a 3D model as their input. In this case, one could simply 

extrude the cross-sectional model, equally in both directions, 

perpendicular to the cross-sectional plane. 

III. RESULTS 

The CT data of 32 patients are used to create the model 

library. The first 31 models of this set were designed using 

the CT-scan images collected at the Medical University of 

Graz from patients in age range of 0 to 7 years old whereas 

the 32nd model corresponds to a patient examined as part of 

the CRADL project (http://cradlproject.org/) by the Oulu 

University Hospital, Oulu, Finland (Ethics number: 

EETTMK 35/2017). 

Considering the limited availability of neonate CT-scans 

and for the sake of introducing models with sufficient internal 

anatomy structure varieties, the models have been chosen 

based on specific age bounds where smaller age intervals are 

dedicated to the earlier ages in life to keep the focus on 

neonates; 0-0.5, 0.5-1, 1-2, 2-3, 3-5 and 5-7 years of age with 

the first interval comprising of 7 patients and the rest each 

containing 5 members. Table I summarizes the patients’ 

specifications for whom their CT-scans were used to design 

the library models. 

 

TABLE I 

MODEL LIBRARY SPECIFICATIONS 
Model 

No. 

Gender 

[m/f] 

Age 

[years] 

Weight 

[g] 

Chest circumference prior to 

scaling [cm] 

1. m 0.17 4970 39.684 

2. m 4.74 16000 58.757 

3. m 0.98 10000 46.958 

4- m 5.56 21000 63.694 

5. m 1.43 10200 47.135 

6. f 0.94 9300 46.107 

7. f 3.20 14500 59.157 

8. f 4.66 15300 55.111 

9. m 2,95 16400 54.367 

10. f 0.20 1404 26.00 

11. f 1.15 9735 46.476 

12. m 2.49 11000 51.162 

13. m 1.52 8000 46.098 

14. m 2.58 12000 52.837 

15. f 5.84 17500 57.493 

16. m 0.8 8000 43.645 

17. m 0.34 7130 43.198 

18. f 6.17 18500 57.043 

19. f 3.05 12800 50.916 

20. m 0.04 2711 30.266 

21. m 1.09 10400 42.169 

22. f 1.19 7900 46.468 

23. f 0.25 3245 35.00 

24. m 0.77 9650 49.00 

25. f 0.34 5880 40.227 

26. m 0.04 4316 38.902 

27. m 2.48 14000 52.093 

28. m 4.24 13700 55.879 

29. m 2.38 11000 48.276 

30. m 6.57 20600 59.362 

31. f 6.79 20200 59.165 

32. f 0.005 3540 36.282 

 

1) Algorithm Performance Evaluation 

The strategy for evaluation of the algorithm performance is 

designed to validate whether the algorithm is capable of 

detecting the desired model given an anonymous EIT signal 

based on one of the existing models in the library. The first 

test used real data measured from a tank with phantoms 

resembling the internal chest organs. This experiment has 

been conducted by Rensselaer EIT Group [35] and the data is 

available for download at the Eidors website 

(http://eidors3d.sourceforge.net/data_contrib/jn_chest_phant

om/jn_chest_phantom.shtml). The tank is circular measuring 

30 cm in diameter whereas the 32 electrodes are spread 

uniformly around it, each 2.5 cm wide. The experiment set up 

and the reconstructed image using absolute imaging are 

plotted in Fig. 5. 

  
(a) (b) 

Fig. 5. Tank data testing; (a) experiment set up, (b) absolute imaging 

reconstruction using tank data. 

The tank model is added to the existing 32 library models and 

the posterior probabilities were calculated based on absolute 

image reconstructed illustrated in Fig 5(b). These values are 

plotted in Fig. 6. The algorithm was capable of detecting the 

true model out of the 33 models. The models with the highest 

assigned posterior probabilities are shown in Fig. 7. These 

http://cradlproject.org/
http://eidors3d.sourceforge.net/data_contrib/jn_chest_phantom/jn_chest_phantom.shtml
http://eidors3d.sourceforge.net/data_contrib/jn_chest_phantom/jn_chest_phantom.shtml


models are 𝑀33, 𝑀2 and 𝑀5 with probabilities of 0.095757, 

0.080126 and 0.078272, respectively. 

 
Fig. 6. Posterior probabilities of each library model using the tank data, 
model 33 which is the correct model has been assigned the highest 

probability. 

   
(a) (b) (c) 

Fig. 7. Three models with highest probabilities; (a) model 33, (b) model 2, 
(c) model 5. 

The rest of tests are done on the patient-based models 

reported previously in Table I. The EIT signals for these tests 

are either simulated using the 3D library models or in one 

specific case measured from a patient. Nonetheless, from here 

onward the responsible model for the generated signal will be 

referred to as the true patient model. Therefore, the true 

patient model is always one of the possible candidates in the 

library models and we check if the algorithm is capable of 

revealing this model. 

In order to create a relatively reasonable population for 

testing the performance while taking into account the 

availability of only a single case with both real measured EIT 

signal and its corresponding CT based model (listed as 𝑀32 

in Table I), 10 other cases were selected from the library to 

form a subset of 11 cases in total. The added cases are used 

to simulate the EIT signals, however, to make these signals 

more realistic, 10% noise was added to the generated signals. 

The subset is chosen in a manner to cover the entire age 

range of the library models and consists of the patients with 

the corresponding models 𝑀4, 𝑀5, 𝑀6, 𝑀7, 𝑀12, 𝑀16, 𝑀18, 

𝑀20, 𝑀26, 𝑀27 and 𝑀32. Therefore, 11 tests were conducted 

with each test consisting of absolute image reconstruction 

using a homogeneous 2D thorax cross-section followed by 

formation of 32, 2D representatives and calculations of 

posterior probabilities to select the best match.  

All the tests were conducted under the same conditions. For 

brevity, only the 9th and 11th tests corresponding to 𝑀26 and 

𝑀32 as representatives for the simulated signal and the real 

data scenarios are explained in more detail here. These cases 

are also used later to demonstrate the final effect of 

appropriate model selection on extracted clinical parameters. 

At each test the posterior probabilities based on (3), are 

calculated for all the library models over the length of the 

signal. In order to evaluate the validity of the results the mean 

of posterior probabilities during the length of signal is 

computed whereas the reliability of model selection can be 

understood from the standard deviation of the probabilities.  

As the patient corresponding to 𝑀26 is among the 10 tests 

based on simulated EIT signals, initially the 3D model of 

patient 26 should be used to simulate the potentials. 

The EIT signal was generated by assigning the conductivity 

of 0.3 Sm-1 to the lung elements versus the rest of thorax 

staying at 1 Sm-1. These conductivities were kept constant 

meaning no tidal breathing was simulated and the lungs were 

presumed to be completely filled with air, however, all the 

tests using simulated electric potentials were repeated for 500 

iterations to account for the added random noise variations in 

time. 

This procedure is not required for the 11th test as the EIT 

data were recorded from the real patient using the SenTec EIT 

device (formerly known as Swisstom AG) operating at 200 

kHz with peak amplitude of excitation currents reaching 3 

mA. The system was set to stimulate and measure with a skip 

4 pattern, meaning the electrode pairs dedicated to inject-

receive currents had a gap of 4 electrodes in between them. 

The same is true concerning measurement pairs. A 32 

electrode belt made of fabric with silver textile electrodes, 

was used [29].  

The baby was supine during the considered interval in this 

work. The patient examined was diagnosed with congenital 

cystic adenomatoid malformation (CCAM) in the left lung. 

CCAM is a benign mass of abnormal lung tissue that replaces 

part of one lobe of a fetal lung [36]. As shown in thoracic 

cross-sections in Fig. 8 the left lung has developed cysts filled 

with air. This has caused the left lung to expand abnormally 

displacing the heart from its original place towards the right 

side. Consequently, the healthy right lung has been 

compressed causing the internal organ distribution to vary 

significantly from typical normal situation. 

   
(a) (b) (c) 

Fig. 8. Three cross-sectional images of a neonate with CCAM in the left lung 
at different levels in craniocaudal direction. 

Measurements were taken at a rate of 48 frames/s. At each 

frame 32 pairs of electrodes are responsible for current 

injection (for instance electrode pairs (1,6), (2,7), …, (32,5) 

in case of skip 4 pattern). In the system used for each source-

sink electrode pair, 29 other electrode pairs remain which are 

not engaged neither in current injection nor in reception of the 

stimulation currents. Consequently, each frame consists of 

928 measurements. The summation of all possible 

measurements at each frame, known as sum-signal is plotted 

in Fig. 9 for an interval of frame 603 to 916 corresponding to 

10 breaths at the beginning of the recording. This signal can 

act as an indicator for the time instants (frame numbers) at 

which the inspirations and expirations start and helps in 

detection of breaths [37]. In this test the restrictions of having 

fixed conductivities, assumption on the constant presence of 

air is lifted and tidal breathing is taking place as a function of 

time. 



 
Fig. 9. Mean and standard deviations of the posterior probabilities of each 

library model using the simulated EIT signal. 
The absolute images are created using the Gauss-Newton 

iterative algorithm [38]. In this work, for the performed 

absolute imaging, a homogeneous background conductivity 

of 0.6 Sm-1 was assigned and the hyper-parameter (𝜆) was 

selected based on the L-curve method [39]. This method 

selects the 𝜆 which minimizes both the residual norm and the 

semi-norm of the regularized solution. The residual norm is 

the norm of the difference between the predicted voltages by 

forward problem, 𝑈(𝜎) and measurements 𝑉 from (2) 

whereas the semi-norm ‖𝐑𝜎‖ depends on the regularization 

matrix 𝐑. The regularization matrix used in the NOSER 

algorithm [40] which is calculated as diag(JTJ) with J being 

the Jacobian matrix of 𝑈(𝜎), has been applied The L-curve 

algorithm plots the semi-norm versus the norm of 

corresponding residuals for values of parameter 𝜆. The 

resulting plot often resembles the shape of English letter ‘L’ 

with optimum 𝜆 value being at the maximum curvature point 

(originally was called the “corner”). 

It is worth to note that in the cases with simulated data, 

the signal was generated from a non-homogeneous, 

separately meshed 3D model containing lungs and was 

additionally perturbed with noise. Whereas, the forward 

model for reconstruction is a 2D homogeneous model (0.6 

Sm-1). The absolute imaging results at a sample iteration from 

the 9th test is plotted in Fig. 10(a) and Fig. 10(b) plots the 

absolute image reconstructed at a sample frame (916) during 

the 11th test. 

  
(a) (b) 

Fig. 10. Absolute imaging results; (a) using simulated data, (b) using real 
data. 

The library models are transversally sliced and 2D 

representatives are formed as lungs corresponding to each 

library model are scaled and inserted in the detected outer 

boundary of the thorax. Examples of such representatives for 

the 9th test are illustrated in Fig. 11 corresponding to models 

1, 2, 5, 9, 24, 32 and 26. Hence, in this test all the representing 

2D models share the outer contour of thorax at the plane of 

electrodes, however, only the 𝑀26 representative contains the 

same lung contours of the true patient model responsible for 

the simulated EIT signal. Therefore, a well-designed 

algorithm is expected to assign the highest posterior 

probability to this representative, shown in Fig 11(h). 

The reconstructed images at each frame using absolute 

imaging are pixelated (here as 64 x 64 squared grid) and used 

to form sets 𝑆∗ that consist of the pixels with their magnitude 

falling in the lower half of the estimated conductivity range. 

   
(a) (b) (c) 

   
(d) (e) (f) 

  

(g) (h) 

Fig. 11.  Examples of library models with stained lungs’ elements to 

highlight the possible variation of lung contours in thorax cross-section 

corresponding to the plane of electrodes; (a) model 1, (b) model 2, (c) model 
5, (d) model 9, (e) model 24, (f) model 32, (g) CT-scan of 3D model,(h) 

model 26. 
The pixels are assigned to 𝑆𝑙 and 𝑆𝑟  based on their spatial 

locations. The pixels are also normalized with the highest 

conductivity being equivalent to 1. Consequently, using (4), 

the set ϕ, subsets of Γ and Λ are constructed for each model 

library. As an example, sets 𝑆∗ corresponding to the first 

frame of the considered interval (namely, 899th frame) for the 

11th test is shown in Fig. 12(a) and subsets Γ∗1and Λ∗1 are 

depicted in Fig. 12(b) and Fig. 12(c), respectively. 

   

(a) (b) (c) 

Fig. 12. Example of created sets for 𝑀32 from absolute image at frame 899, 

(a) sets 𝑆𝑙 and 𝑆𝑟, (b) subsets Γ𝑙32 and Γ𝑟32, (c) subsets Λ𝑙32 and Λ𝑟32. 

Using (3)-(5) the posterior probability of each model library 

is computed at each time instant. While in simulated EIT this 

was done in every iterated frame, in real data case 20 frames 

including the beginning and end of 10 consecutive tidal 

breaths in the interval (plotted in Fig. 9) are calculated. 

The mean and standard deviation of posterior probabilities 

in time for all the library models for tests 9 and 11 are listed 

in Table II and also plotted in Fig. 13 and Fig. 14, 

respectively. 

Note that in some cases despite scaling the lungs according 

to circumference of the patient thorax, still the lungs cannot 

be enclosed by the thorax contour and hence N/A is written 

within the related cell in Table II. This is mainly due to the 



way lungs grow at early years of life and the expansion in the 

size is not uniform in the lateral and ventro-dorsal directions 

[41]. 
TABLE II 

STATISTICS OF CALCULATED PROBABILITIES FOR EACH LIBRARY MODEL. 

Model 

No. 

Simulated data generated from 

3D model represented by 𝑀26  

Real data measured from patient 

represented by 𝑀32 

𝜇 (𝑃(𝑀𝑗|𝒪)) 𝜎 (𝑃(𝑀𝑗|𝒪)) 𝜇 (𝑃(𝑀𝑗|𝒪)) 𝜎 (𝑃(𝑀𝑗|𝒪)) 

1. 0.028717 0.0020922 0.025395 0.0003740 

2. 0.035794 0.0027391 0.050377 0.0007797 

3. 0.039656 0.0024574 0.026113 0.0005318 

4- 0.025357 0.0019619 N/A N/A 

5. 0.027255 0.0032205 0.040483 0.0004487 

6. 0.022515 0.0021042 N/A N/A 

7. 0.035591 0.0029926 0.063263 0.0005494 

8. 0.038959 0.0030177 0.038277 0.0006315 

9. 0.031984 0.0017434 0.028788 0.0010998 

10. 0.033992 0.0026668 0.033018 0.0013014 

11. 0.03662 0.003184 0.030478 0.0005310 

12. 0.037092 0.0023798 0.055649 0.0005995 

13. 0.019922 0.0024732 N/A N/A 

14. 0.037030 0.0023503 0.045326 0.0006163 

15. 0.038628 0.0023778 0.032273 0.0012860 

16. 0.033136 0.0024212 0.041133 0.0005452 

17. 0.036735 0.0019249 0.033232 0.0005939 

18. 0.034714 0.0013592 0.026020 0.0008403 

19. 0.026617 0.0020712 0.019584 0.0015135 

20. 0.030585 0.0028495 0.017348 0.0003053 

21. 0.026241 0.0025641 N/A N/A 

22. 0.024164 0.0020014 0.047471 0.0012875 

23. 0.040796 0.0045927 0.038250 0.0010006 

24. 0.037012 0.0021572 0.037511 0.0012134 

25. 0.03556 0.0032439 0.054449 0.0013458 

26. 0.050313 0.0038443 0.030645 0.0009488 

27. 0.033388 0.0018172 0.034136 0.0011283 

28. 0.020644 0.0018307 N/A N/A 

29. 0.020284 0.0027668 N/A N/A 

30. 0.035105 0.0030314 0.034136 0.0011283 

31. N/A N/A N/A N/A 

32. 0.025594 0.0060054 0.114517 0.0018671 

The algorithm has favored the true models 𝑀26 and 𝑀32 

correctly over the other models. For brevity, for the remaining 

tests only the top three posterior probabilities are listed in 

Table III. The full values for these tests are presented in Table 

A.1 in the Appendix. 

 
Fig. 13. Evaluation of mean of each model posterior probabilities 

corresponding to test number 9 with the standard deviations shown as error 

bars.  

 
Fig. 14. Evaluation of mean of each model posterior probabilities test number 

11 with standard deviations plotted as error bars.  

TABLE III 

HIGHEST RANKED MODELS AND THEIR CORRESPONDING CALCULATED 

PROBABILITIES FOR THE REMAINING TESTS. 
Test 

No. 

True 

Model 

Top Ranked 

Models 
𝜇 (𝑃(𝑀𝑗|𝒪)) 𝜎 (𝑃(𝑀𝑗|𝒪)) 

1 𝑀4 

𝑀1 0.040814     0.0038678 

𝑀6 0.042481     0.0049579 

𝑀4 0.043968     0.0038322 

2 𝑀5 

𝑀2 0.041345     0.0028361 

𝑀12 0.041577     0.0041089 

𝑀5 0.042172     0.0038279 

3 𝑀6 

𝑀25 0.04074     0.0041381 

𝑀23 0.044106 0.0074098 

𝑀6 0.046168 0.0052143 

4 𝑀7 

𝑀15 0.038948     0.0021712 

𝑀2 0.040458     0.0029368 

𝑀7 0.042373     0.0022091 

5 𝑀12 

𝑀5 0.04023      0.005212 

𝑀8 0.041773     0.0031125 

𝑀12 0.043788     0.0061456 

6 𝑀16 

𝑀1 0.041481     0.0030007 

𝑀24 0.042102     0.0024629 

𝑀16 0.042782     0.0029505 

7 𝑀18 

𝑀18 0.036792              0.0021021 

𝑀2 0.03765     0.0029788 

𝑀23 0.037677     0.0049431 

8 𝑀20 

𝑀1 0.051594 0.0079444 

𝑀23 0.053935 0.0084784 

𝑀20 0.06252 0.010466 

10 𝑀27 

𝑀27 0.036919 0.0011111 

𝑀4 0.03692 0.0018991 

𝑀6 0.038622 0.0043087 

 

In all the remaining tests the algorithm ranked the true patient 

model among the top three highest probabilities. With the 

exception of tests number 7 and 10, in fact the true model is 

evaluated as the most probable candidate. To clarify the 

confusion between the models at these two test cases (and 

also for other tests in which the results are close to each other) 

the representatives are plotted for the 7th test in Fig. 15 

whereas Fig. 16 contains the plots concerning test number 10.  

  
 

(a) (b) (c) 

Fig. 15. First three top ranked model representatives at test number 7; (a) true 

model 𝑀18, (b) 𝑀2, (c) 𝑀23 



  
 

(a) (b) (c) 

Fig. 16. First three top ranked model representatives at test number 10; (a) 

true model 𝑀27, (b) 𝑀4, (c) 𝑀6 

Despite the failure to identify the true models in 2 tests out of 

the 11 tests performed, the true models are located in the top 

three possible candidates while having lower standard 

deviation than their rival models. 

To establish the stability of the algorithm towards higher 

noise levels, the 10 cases with simulated EIT data, were 

corrupted with 20% and 30% noise levels. In the former case 

the true model was detected among the top three with slightly 

higher standard deviation; however, in the 30% noise level 

despite being detected in 9 cases out of 10, due to the 

degraded quality of reconstructed images, the standard 

deviations rose too high hence, making the results unreliable. 

The next sub-section provides a case study to highlight the 

potential impact of applying the method on clinical 

parameters extracted from the reconstructed images. This is 

done by comparing these parameters based on situation when 

the proper model suggested by the algorithm is applied as 

opposed to selection of other models. 

2) Effects of Updated Model on Extracted Parameters 

The effects of appropriate model selection on the extracted 

parameters are evaluated for the patient with measured EIT 

data and shown through reconstructing tidal images for a set 

of 4 library models as this case includes tidal. This set 

includes the first two models with the highest probabilities, 

𝑀32, 𝑀7 and the two models with the lowest assigned 

probabilities 𝑀19 and 𝑀20 during the conducted test number 

11. 

There is no limitation regarding the choice of the 

reconstruction method at this point. However, two methods 

of difference imaging were chosen; the GREIT algorithm as 

it is currently being used in the commercially available EIT 

devices and the tSVD method [42]. It is worth mentioning 

that the application of these reconstruction methods are to 

emphasize the potential impact on the clinical parameters and 

it is not intended for comparison of the reconstruction 

performance of the two techniques. In fact the tSVD was 

chosen as its tuning parameter (truncation level) has 

straightforward mathematical sense otherwise algorithms 

such as Generalized tSVD (GtSVD) [43] would be a more 

suitable choice for comparison with GREIT which has 

number of tuning parameters. The parameters for each 

reconstruction type have been kept the same for all the 

models throughout the image reconstructions. 

The GREIT algorithm parameters were set to 0.1 as the 

target size, with noise figure to 0.3, whereas the background 

conductivities of 0.6 and 1 for lungs and rest of the thorax 

regions respectively. Three tidal images indicating three 

consecutive breaths from frame pairs of (763,780), (793,814) 

and (830,850) are shown in Fig. 17 with panel rows 

corresponding to 𝑀7, 𝑀19, 𝑀20 and 𝑀32 respectively. The 

values are normalized to the least conductive value of the 

three demonstrated images for each model. Furthermore, the 

pixels indicating the contours of the actual patient’s lungs at 

the EIT belt level, are superimposed (in dark shade) on the 

reconstructed images generated from all the model libraries 

to visually assist the reader to distinguish the differences. 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

Fig. 17. Tidal images created using GREIT algorithm for consecutive breaths 
of 6th, 7th and 8th,(a)-(c) model 7,(d)-(f) model 19, (g)-(i) model 20, (j)-(l) 

model 32. 
The same strategy was also applied to the same breaths 

interval when performing tSVD difference imaging with 

conductivity of 0.2 being assigned to the lung domains and 

the truncation ratio of 0.4. 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

Fig. 18. Tidal images created using tSVD algorithm for consecutive breaths 
of 6th, 7th and 8th,(a)-(c) model 7,(d)-(f) model 19, (g)-(i) model 20, (j)-(l) 

model 32. 



The difference of reconstruction using 𝑀32 in correctly 

providing the air ventilation within the lung regions and less 

artefacts are evident from Fig. 17 and Fig. 18. However, it 

should be noted that the clinicians make their decision and 

possible interventions during EIT monitoring based, not only 

on the EIT images, but mainly on the values/trends of EIT 

parameters extracted from the functional EIT images. Two of 

these parameters, namely, silent spaces and center of 

ventilation (CoV) are calculated for each model of the chosen 

set in order to evaluate the possible improvements made by 

selecting the proper model. 

The former parameter describes the parts of lungs with low 

tidal volume changes and is calculated as the ratio of pixels 

having less than 10% of the maximum reconstructed 

conductivity (in magnitude sense) in tidal image to the total 

number of pixels forming each lung. 

CoV describes the distribution of ventilation and is 

computed as the weighted geometric center at each tidal 

breath[44]. The CoV for each model is plotted in Fig. 18 with 

Fig. 18(a) corresponding to GREIT reconstruction and Fig. 

19(b) is a result of tSVD application. The images are 

magnified to better show the results where the markers 

indicate the mean of CoV in horizontal and vertical directions 

for each model. The distances are in percentage relative to the 

total grid size with (0%,0%) being at the top left corner of 

grid corresponding to right side ventral side of the patient’s 

thorax cross-section whereas bars represent the maximum 

variations in the two vertical and horizontal directions from 

the mean during the considered 10 tidal breaths. 

Considering the patient’s disorder, despite the larger size of 

the left lung, one would expect relatively low ventilation 

amid the presence of the cysts whereas the right lung 

compressed healthy lung should be engaged almost fully 

relative to its smaller size in tidal breathing. 

  
(a) (b) 

Fig. 19. Center of Ventilation for model libraries in percentage relative to 

the total grid size, (a) GREIT algorithm, (b) tSVD algorithm. 

In addition, the patient was reported to be positioned in the 

supine posture, therefore, the correct location of CoV is 

expected to be rather in the dorsal region (>50%) in the 

ventro-dorsal direction and central to the right of patient in 

horizontal direction due to the lungs’ status. 

Fig. 19 illustrated that in the case of applying GREIT 

algorithm all the models are pointing to the expected area 

where in the case of tSVD only the models with highest 

probability values are referring to the correct region. The 

reason behind this issue will be discussed later in the 

discussion section. 

Conversely, when compared to CoV, silent spaces improve 

dramatically when the proper prior model is used. 

Considering again the condition of the patient, the expanded 

left lung should have high values of silent spaces due to low 

amount of ventilation whereas the healthy compressed right 

lung should have low values of silent spaces. Fig. 20 

summarizes the mean of computed silent spaces in the lungs 

for each model. It can be readily seen that the silent spaces 

suggested by the inaccurate models, are more than twice the 

value of the silent spaces calculated when using the suggested 

model by the algorithm. The model with the second highest 

probability still remains the closest to the true model of the 

patient. The misleading results in case of using the inaccurate 

model might have important consequences in clinical 

decision-making. 

  
(a) (b) 

Fig. 20. Extracted lungs silent spaces for each model of the considered set 

during 10 consecutive tidal breaths, using (a) GREIT, and (b) tSVD. 

IV. DISCUSSION 

The first issue needed to be addressed here is the underlying 

reason for the intensified differences in the extracted clinical 

parameters across the considered models when tSVD is used 

relative to the time when GREIT is in place. The reason lies 

in the way each of these methods build their reconstruction 

matrices. This matrix is the matrix responsible for providing 

element conductivities after being multiplied by the 

measured/simulated electric potentials at each frame. 

In GREIT, the algorithm uses a transversal plane (default is 

the electrode plane) to build the reconstruction matrix. 

Starting from Jacobian of the prior model, an optimization 

process assigns different weights to the reconstruction matrix. 

These weights are the results of minimization function which 

acts on a set of conductivity targets in the plane of electrodes 

as the training dataset and generates the output signal within 

many iterations. Therefore, causing the algorithm to suppress 

the effects of incorrect prior model by adjusting the weights 

in the reconstruction matrix. However, tSVD uses the direct 

Jacobians which are directly dependent on the prior model 

used conductivities and the only adjustment is the truncation 

of the matrix to control the condition number and improve the 

stability during the inversion process. Thus, the reconstructed 

images and consequently the extracted parameters resulting 

from GREIT show less dramatic changes when the improper 

model is used. However, this comes at the price of less 

accurate result, in case of proper model selection. A good 

example of such scenario can be seen in the calculated silent 

spaces plotted in Fig. 20. After selection and insertion of 𝑀32 

in the reconstruction process, the calculated silent spaces in 

the left lung are not as high as its counterpart with tSVD in 

charge, meanwhile the reverse is true for the silent spaces of 

the right lung. The other disadvantage of GREIT is the high 

number of parameters that need to be tuned for reconstruction 

(to be used in optimization training part) whereas as 

mentioned tSVD only needs a truncation threshold. 

The second issue that is worth further consideration is the 

fact of only small changes in CoV specially in GREIT 

algorithm. This is due to the explained matrix built-up 

reconstructions which effect the reconstructed images (shown 

in Fig. 20). They have less model impact relative to tSVD, 

although when it comes to silent spaces the differences 



become evident. This is due to the further use of the model in 

computing the silent spaces. 

Regardless of the choice of reconstruction method still the 

improvements are significant. For instance, in case of silent 

spaces of the right lung, these values in comparison to the 

time when the true model is implemented, could be off-target 

by as much as 250% to 400%, applying GREIT and tSVD 

respectively. 

V. CONCLUSION 

The results suggest that the developed algorithm is capable 

of detecting a close match for the patient both in simulation 

tests and in practice. Creating patient specific prior models 

would have a potential beneficial impact on clinical decisions 

and interventions based on EIT examinations. This was 

analyzed using two established measures, CoV and silent 

spaces. Each of these clinical parameters was evaluated with 

the GREIT and tSVD image reconstruction methods. 

The ability to apply the algorithm at any desired time 

interval makes it convenient to use, since the device can 

calibrate itself without any preprocessing. However, as the 

nature of the absolute imaging implies, it is dependent on the 

capability of accelerometers to provide the boundary shape 

and electrode positions. Moreover, as an iterative Gauss-

Newton method algorithm is used, it is unlikely to run the 

calibration part in real time. However, considering the 

generated models are in 2D, the required time is limited to 

typically a few tens of seconds (depending on the size of the 

2D mesh and computational power of the processor in use). 

Freedom of choice in the final reconstruction algorithm is yet 

another advantage of the developed algorithm. 

A device capable of performing multi-frequency excitations 

would be ideal, however, it was not available at the time of 

recording the EIT signal from our reference patient. Should 

the algorithm perform well in the single frequency mode, the 

application of multi-frequency is expected to further improve 

the quality of the image reconstructions [45]. 

Lastly, the sample of 32 models is not sufficient to assess 

all possible individual physiological and pathological 

differences in the anatomical organ locations. In the future, 

the library could be expanded to represent a wider range of 

ages, sizes and possible disorders. 
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APPENDIX 
TABLE A.1 

STATISTICS OF CALCULATED PROBABILITIES FOR EACH LIBRARY MODEL FOR TESTS NUMBERS 1, 2, 3, 4, 5, 6, 7, 8 AND 10.

Library 

Model 

No. 

Data Simulated 

from 3D model 

𝑀4 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀5 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀6 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀7 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀12 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀16 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀18 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀20 

(𝜇, 𝜎) 

Data Simulated 

from 3D model 

𝑀27 

(𝜇, 𝜎) 

1. 0.0408    0.0039 0.0245    0.0032 0.0349    0.0047 0.0283    0.0029 0.0238    0.0042 0.0415    0.0030 0.0299    0.0030 0.0516    0.0079 0.0322    0.0017 

2. 0.0357    0.0025 0.0413    0.0028 0.0374    0.0033 0.0405    0.0029 0.0366    0.0030 0.0337    0.0019 0.0377    0.0030 0.0225    0.0045 0.0326    0.0017 

3. 0.0394    0.0037 0.0295    0.0039 0.0392    0.0046 0.0320    0.0030 0.0301    0.0049 0.0389    0.0030 0.0341    0.0036 0.0450    0.0044 0.0334    0.0028 

4- 0.0440    0.0038 0.0269    0.0022 0.0340    0.0039 0.0276    0.0023 0.0271    0.0032 0.0362    0.0020 0.0279    0.0027 0.0423    0.0046 0.0369    0.0019 

5. 0.0296    0.0030 0.0422    0.0038 0.0307    0.0042 0.0384    0.0028 0.0402    0.0052 0.0255    0.0023 0.0334    0.0032 0.0146    0.0074 0.0299    0.0025 

6. 0.0425    0.0050 0.0352    0.0036 0.0462    0.0052 0.0337    0.0026 0.0353    0.0037 0.0333    0.0033 0.0368    0.0037 0.0434    0.0048 0.0386    0.0043 

7. 0.0310    0.0026 0.0412    0.0027 0.0346    0.0035 0.0424    0.0022 0.0402    0.0034 0.0309    0.0025 0.0363    0.0030 0.0178    0.0066 0.0315    0.0021 

8. 0.0343    0.0021 0.0404    0.0025 0.0354    0.0029 0.0371    0.0021 0.0418    0.0031 0.0273    0.0019 0.0355    0.0020 0.0206    0.0050 0.0340    0.0013 

9. 0.0370    0.0018 0.0362    0.0020 0.0391    0.0022 0.0357    0.0016 0.0361    0.0023 0.0308    0.0014 0.0359    0.0018 0.0313    0.0025 0.0347    0.0018 

10. 0.0394    0.0028 0.0328    0.0020 0.0374    0.0031 0.0337    0.0024 0.0336    0.0037 0.0339    0.0027 0.0321    0.0021 0.0398    0.0049 0.0350    0.0015 

11. 0.0296    0.0034 0.0329    0.0038 0.0263    0.0038 0.0324    0.0035 0.0373    0.0050 0.0237    0.0030 0.0282    0.0034 0.0107    0.0059 0.0287    0.0025 

12. 0.0313    0.0032 0.0416    0.0041 0.0299    0.0046 0.0374    0.0034 0.0438    0.0061 0.0216    0.0028 0.0303    0.0033 0.0081    0.0067 0.0344    0.0041 

13. 0.0316    0.0022 0.0319    0.0032 0.0296    0.0038 0.0302    0.0026 0.0349    0.0040 0.0225    0.0020 0.0278    0.0026 0.0155    0.0045 0.0305    0.0024 

14. 0.0353    0.0022 0.0311    0.0021 0.0333    0.0033 0.0308    0.0022 0.0284    0.0030 0.0333    0.0028 0.0335    0.0026 0.0298    0.0035 0.0287    0.0018 

15. 0.0330    0.0029 0.0367    0.0021 0.0366    0.0028 0.0389    0.0022 0.0366    0.0025 0.0376    0.0019 0.0365    0.0021 0.0251    0.0046 0.0326    0.0010 

16. 0.0326    0.0019 0.0207    0.0024 0.0164    0.0141 0.0249    0.0025 0.0209    0.0040 0.0428    0.0030 0.0284    0.0029 0.0417    0.0056 0.0280    0.0017 

17. 0.0350    0.0029 0.0361    0.0029 0.0337    0.0030 0.0379    0.0026 0.0353    0.0035 0.0360    0.0029 0.0334    0.0025 0.0205    0.0059 0.0310    0.0014 

18. 0.0290    0.0030 0.0369    0.0020 0.0360    0.0027 0.0338    0.0017 0.0328    0.0027 0.0299    0.0025 0.0368    0.0021 0.0290    0.0034 0.0325    0.0009 

19. 0.0309    0.0029 0.0253    0.0025 0.0304    0.0036 0.0254    0.0024 0.0245    0.0033 0.0301    0.0025 0.0277    0.0032 0.0291    0.0043 0.0308    0.0023 

20. 0.0377    0.0046 0.0211    0.0024 0.0328    0.0036 0.0224    0.0019 0.0223    0.0035 0.0348    0.0026 0.0241    0.0030 0.0625    0.0105 0.0313    0.0037 

21. 0.0358    0.0024 0.0273    0.0028 0.0441    0.0074 0.0240    0.0026 0.0259    0.0034 0.0203    0.0022 0.0292    0.0031 0.0288    0.0045 0.0270    0.0022 

22. 0.0378    0.0029 0.0257    0.0025 0.0332    0.0034 0.0250    0.0026 0.0258    0.0038 0.0260    0.0024 0.0274    0.0028 0.0259    0.0035 0.0282    0.0028 

23. 0.0331    0.0035 0.0359    0.0043 0.0407    0.0041 0.0363    0.0045 0.0374    0.0056 0.0346    0.0039 0.0377    0.0049 0.0539    0.0085 0.0343    0.0035 

24. 0.0405    0.0021 0.0262    0.0024 0.0310    0.0047 0.0297    0.0022 0.0255    0.0033 0.0421    0.0025 0.0311    0.0020 0.0397    0.0042 0.0301    0.0013 

25. 0.0276    0.0033 0.0303    0.0025 0.0380    0.0035 0.0313    0.0023 0.0276    0.0033 0.0392    0.0021 0.0347    0.0026 0.0423    0.0042 0.0325    0.0024 

26. 0.0334    0.0039 0.0238    0.0033 0.0284    0.0041 0.0307    0.0034 0.0285    0.0051 0.0350    0.0010 0.0303    0.0037 0.0453    0.0074 0.0315    0.0026 

27. 0.0346    0.0034 0.0316    0.0018 0.0292    0.0040 0.0316    0.0019 0.0318    0.0022 0.0179    0.0022 0.0321    0.0020 0.0369    0.0022 0.0369    0.0011 

28. 0.0352    0.0023 0.0350    0.0036 0.0241    0.0047 0.0309    0.0027 0.0374    0.0051 0.0271    0.0031 0.0276    0.0026 0.0110    0.0054 0.0285    0.0021 

29. 0.0221    0.0065 0.0242    0.0028 0.0384    0.0032 0.0233    0.0027 0.0235    0.0035 0.0182    0.0034 0.0261    0.0037 0.0284    0.0039 0.0283    0.0024 

30. 0.0408    0.0039 0.0319    0.0047 0.0189    0.007 0.0299    0.0035 0.0328    0.0053 0.0276    0.0016 0.0269    0.0037 0.0113    0.0057 0.0251    0.0024 

31. 0.0357    0.0025 0.0343    0.0023 0.0349    0.0047 0.0320    0.0017 0.0342    0.0029 0.0340    0.0051 0.0339    0.0019 0.0352    0.0029 0.0342    0.0012 

32. 0.0394    0.0037 0.0094    0.0048 0.0374    0.0033 0.0117    0.0040 0.0082    0.0052 0.0337    0.0052 0.0168    0.0049 0.0403    0.0174 0.0158    0.0023 

 


