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Abstract

Projecting multi-dimensional data to a lower-dimensional visual display
is a commonly used approach for identifying and analyzing patterns in data.
Many dimensionality reduction techniques exist for generating visual embed-
dings, but it is often hard to avoid cluttered projections when the data is
large in size and noisy. For many application users who are not machine
learning experts, it is difficult to control the process in order to improve
the “readability” of the projection and at the same time to understand their
quality. In this paper, we propose a simple interactive feature transformation
approach that allows the analyst to de-clutter the visualization by gradually
transforming the original feature space based on existing class knowledge.
By changing a single parameter, the user can easily decide the desired trade-
off between structural preservation and the visual quality during the trans-
forming process. The proposed approach integrates semi-interactive feature
transformation techniques as well as a variety of quality measures to help
analysts generate uncluttered projections and understand their quality.
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1. Introduction

Projection-based Data Analysis (PDA) is a widely used visual analytics
approach for identifying and analyzing patterns in Multi-Dimensional (MD)
data. The idea is to map each object in the data as a point to a two or three-
dimensional visual display in such a way that similar objects are close to
each other and dissimilar ones are further apart. The result is represented in
a scatterplot where structures and patterns can be analyzed effectively. The
mapping is usually achieved by a Dimensionality Reduction (DR) technique
that approximates the distance (similarity) between objects in the MD data
space to the Lower-Dimensional (LD) projection space. Fig. 1 shows an
example of such projection.
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Figure 1: Images (28X28 D) of hand-written digits projected to a 2D display

A large number of DR methods exist [1, 2] for generating projections that
preserve the original structure and characteristic of the data. However, when
the data is large and noisy, the projection can be cluttered where points and
groups overlap each other. The poor visual quality can make it difficult to
identify and analyze patterns in the data. This problem originates from the
curse of dimensionality problem [3]. First of all, distances measures tend
to be less meaningful while dimensionality increases, as all objects become
similar and dissimilar in many ways, leading to objects being plotted to sim-
ilar locations in the visual display. Secondly when there is class information
involved, those features that are irrelevant to the class labels can obscure the
class separation, leading to blurred group boundaries in the projection.

For PDA it is important that the projection not only preserves the data
structure but also reveals patterns in the data. When class information is
available, a common approach is to take a supervised DR approach that



uses class labels to improve group separation in the projection. Available
methods include the Linear Discriminative Analysis (LDA) [4] that extracts
the discriminative features to the class labels and use them to generate em-
bedding, the Neighborhood Components Analysis (NCA) [5] that learns a
distance metric by finding a linear transformation of input data such that
the average classification performance is maximized in the projection space,
and the Mazimally Collapsing Metric Learning (MCML) [6] that aims at
learning a distance metric that tries to collapse all objects in the same class
to a single point and push objects in other classes far away.

Supervised DR helps improve visual clarity of projections but an unclut-
tered projection can hardly be guaranteed. On the other hand for explorative
analysis, it is important to gain an overview of the data before detailed anal-
ysis [7]. A recent work by Schaefer et al. [8] proposed a novel approach that
improves the visual quality of the projection by adding class-related features
to the original feature space and generating projections based on the ex-
tended data. Some promising results were reported. It is not surprising that
by feature extension the original structure of the data will be distorted to a
certain degree. However, the paper shows that a good compromise between
the structural preservation and visual quality can often be made. Moreover,
when the data is large and noisy, the method often distorts the structure
in a good way such that meaningful patterns obscured by the noise can be
revealed especially when the class labels fit to the data structure.

Another issue of PDA is interactivity and transparency. For many appli-
cation users who are not Machine Learning (ML) experts, the DR process is
often kept in a black-box which makes it difficult to understand and control.
Recent advances in solving this problem include i) the interactive visual DR
approaches that integrate the human expertise in the DR process [9, 10], ii)
the interactive MD projection system that allows the user to manipulate the
control points (subset of sample points) in the visual space based on their
knowledge to better organise them as groups [11] and iii) the interactive
feature space transformation approach that allows the analyst to transform
existing feature space using different strategies based on their knowledge and
understanding about the data [8, 12].

In this paper, we present a simple but effective interactive approach that
allows the analyst to improve the visual quality of the projection by gradu-
ally transforming the original feature space towards clearer group separation
in the projection space. This group separation helps in the exploration but
it is restricted by the underlying data support. The approach is similar
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to supervised DR but provides additional user control over the transforma-
tion process. The user can adjust the degree of transformation, via a single
weighting parameter, and stop at any point where a projection is obtained.
The method can be applied on top of any existing supervised DR approach
to further improve the group separation. When class labels are not avail-
able, clustering results can be used as substitutions to support explorative
analysis. In such case, more uncertainty is often introduced, however a se-
ries of quality measures are provided to help understand the quality of the
projection both in terms of structural preservation and visual clarity. These
quality measures provide additional numerical evaluation for the decision of
a final projection.

The main contributions of this paper include 1) a novel and flexible visual
analytics approach that combines interactive visualization, feature transfor-
mation, and quality evaluation for PDA; 2) a simple but effective feature
transformation technique for gradually improving group separation in the
projections space; 3) an interactive user interface that provides user control
over the transformation process. The remainder of this paper is organized as
follows. In Section 2 we discuss related work, in Section 3 we explain the de-
tails of the proposed approach, in Section 4 we demonstrate the effectiveness
of the method with data by means of a set of experiment results, in Section 5
some characteristics and limitations of the method are discussed and finally,
in Section 6 we draw conclusions with an outlook over future work.

2. Related work

The work presented in this paper relates to interactive MD data projec-
tion, feature transformation and quality assessment of visual embedding.

2.1. Interactive MD data projection and Feature Transformation

(Classical DR methods estimate the structure of manifolds with a smaller
intrinsic dimensionality. When used for generating visual embedding of MD
data, the result can be unsatisfactory, especially when the dimensionality is
high and the data contains noise. Firstly, the projection space is limited to
2D or 3D. Secondly, by its nature the reduction causes information loss and it
is often difficult for the algorithms to determine which information is less rel-
evant to the analysis tasks. In [13] the importance of integrating interactions
with statistic methods (in particular, DR techniques) to support exploratory
analysis of MD data is discussed. By interactive analysis, the analyst can



better steer the DR process by incorporating their domain knowledge and
analytical skills for generating better projections.

In recent years, the idea of interactive projection has been widely adopted.
For example, a semi-supervised approach is proposed in [14] for projecting
MD data. In [15] interactive projection techniques are developed to allow the
analyst integrate their knowledge about the data to the DR process. The
iPCA [9] is proposed to provide coordinated views for interactive analysis of
projections computed by PCA. In [10] the :VisClassifier system that inte-
grates supervised DR technique LDA with interactivity is developed. The
analysis of DR techniques with interactive controls were also proposed in
[16] and the DimStiller framework [17] where the user is guided during the
analysis process by means of workflows.

An effective approach to improve the visual quality of the projection is
feature transformation. Given grouping information such as class labels or
natural groups (clusters) in the data, the analysts may want to improve the
visual quality of the projection gradually so that detailed analysis can be
carried out. This can be achieved by pulling group members closer to each
other in the projection and pushing non-group members further apart in the
projection space. In theory such a task can be fulfilled by supervised DR,
however, as discussed in the previous section the fully automatic approach
lacks user control and transparency. Schaefer’s approach [8] improves the
existing solution by allowing the analyst to extend certain features in the
data based on grouping information and to add the extended features to the
original feature space for generating better quality projections. The result
shows that a good compromise can often be made between structural preser-
vation and visual clarification. In [11, 18] another user-driven feature trans-
formation approach, the Local Affine Multidimensional Projection (LAMP)
is proposed and implemented. LAMP allows the user to modify the point
locations in the visual display and use the modification as feedback to up-
date the original feature space in order to achieve better visual quality. The
approach provides easy user control over the projection process and does
not require much ML knowledge. However when the location of multiple
points are modified in the visual display, the method may encounter heavy
computation load while updating local neighborhood diagrams of multiple
control points. Another interesting approach called Dis-Function was pro-
posed by Brown et al. [19] which displays the projection on an interactive
visual display such that the analyst can move points around to modify the
distance between objects based on their own knowledge. The modification on



the visual space is then used to update the distance function and recompute
the distance measure. Such approach integrates new knowledge to the data
which is similar to our approach, except that Dis-Function requires some
prior knowledge of distance between objects, and our approach is meant for
using existing grouping information.

In addition to the above mentioned work, a comparison of feature sets
can be found in [20], where an interactive exploration can be made for the
selection of suitable data descriptors. A related problem was addressed in
[21] where dendrogram structures were extracted from alternative feature
sets, and applied for interactive comparison and selection of feature sets.
These interactive methods demonstrate the possibility of improving PDA by
incorporating user knowledge and feedback. However interactive MD data
projection remains a challenge as many of the existing methods are either
dependent on a particular DR technique, or rely on a good understanding of
the applied DR techniques.

2.2. Quality Metrics

Despite the large number of DR techniques that have been developed, the
question of quality assessment of a given projection has only been studied in
several cases and systematized in recent years [22, 23].

The first measures introduced to assess the quality of a projection were
the so called stress and strain measures [24, 25|. These measures assess the
quality of structural preservation by computing the differences of the pair-
wise distances between objects in the LD embedding and the corresponding
distances in high-dimensional (HD) data space. They come from objective
functions of a family of DR techniques such as Multidimensional Scaling
(MDS) so that errors can be evaluated at the end of the minimization of
the function. For example, one of the most commonly used Sammon’s stress
refers to the final value of the error function in the Sammon’s projection
algorithm as follows,

(1)

where d; is the distance between two points 7 and j in the HD data space
and d;; is the distance between the corresponding points in the LD projection
space.



While strain and stress measures analyze the preservation of data struc-
ture based on differences of distances, several measures like trustworthiness
and continuity [26] and the K-ary neighborhoods measure [27] assess the
quality of a projection in a broader applicability, taking into consideration
also neighborhood preservation using rank-based criteria.

For example, the K -ary measure is defined as

K
Onx (K Z’n Ak ; (2)

where nX and vX are the K nearest neighbors of the point i in HD and LD
spaces respectlvely. It is usually displayed as a line for the different values
of K from 0 to N — 1, here the average of these values Qqyy is considered
in order to summarize the overall quality in a number between 0 and 1,
where the higher value indicates better projection. Beside, when the data is
labelled, the classification error is a typical choice, see for instance [28] and
other references in [29]. The integration of classification error measures in
the DR technique leads to better group separation in the final embedding.

Apart from the structural preservation quality measures mentioned above,
a set of visual quality measures has also been developed. Examples include
Histogram Density Measure that ranks scatter plot visualizations of multi-
dimensional data, the Class Density Measure that assess class separation
of a given projection, both proposed in [30], and class consistency measures
[31]. Moreover, the overlap measures, defined in [§], compute the overlap area
between groups and overlap object density in a multidimensional data projec-
tion. The overlap area sums the area of all the overlap regions intersect(i, j)
between pairwise groups for the set g of groups:

lgl=1 gl
OVpeg = Z Z intersect(i, j) (3)
i=1 j=it+1

The overlap regions are computed from the definition of the region of
each group described by using the concave hull of the objects of each group
proposed in [32]. The overlap density takes into account the density of the
points over-plotted in the visual display. The visual display is divided into
grids units where the occupation of a specific class is determined by using
Gaussian functions G in the function f defined as follows

f(Gip;Gjp):{ 1 iof Gip>0and Gj, >0 (4)

0 else
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Thus, f is activated by 1 in the case where a grid square unit is occupied
by two classes with the Gaussian model. The sum of these grids found for
pairwise classes gives the overlap density measure, defined for K classes and
an image of P pixels as

IKI-1 K P
OUdensity = Z Z Z f(Gipv G]p) (5)
i=1 j=i+1 p=1
In the next examples, the grid resolution is uniformly set to 3 pixels and
o value of the Gaussian model to 12, so that different experiment results can
be compared.

3. Interactive feature extension

In this paper, we propose an analysis framework that combines the trans-
formation of the feature space, the interactive parameter setting and visual-
ization to help analysts achieve a better interpretation of projection results.
Given a MD dataset, available grouping information is used to generate an
extended feature space in such a way that the class knowledge is introduced
in the extended feature space. The analyst can select certain attributes or
the whole set for feature extension based on their knowledge and modify the
projection gradually in order to achieve a good visual embedding. The qual-
ity of the projections will be evaluated using various quality measures. The
process can be repeated iteratively until a satisfactory projection is achieved.
Fig. 2 shows the flowchart of the proposed method.

3.1. Feature space extension

The basic idea of the feature space transformation is to extend certain
features based on available grouping information. Consider a MD dataset
as a matrix X where rows are data items and columns are features, and the
labels y are given to the class corresponding to the i-th row.

X = [z;] e R y=[y] e N (6)

With ¢« = 1,...,n and 7 = 1,...,d, where n is the number of feature
vectors and d the number of dimensions. If m features are selected f =
fi,-.., fm, the extended data matrix X’ is defined as follows,

X' = [wy; |;] € R™ () (7)
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Figure 2: Workflow of the method

where Z;; is the statistical value corresponding to the class label y; in the
feature f;. Here, we use the arithmetic mean within the class members
on a particular dimension. For example suppose we have a dataset with 2
attributes, 4 records that belong to 2 classes as shown below:

Sepal.Length | Sepal. Width | Species

5.1 3.5
4.9 3.0
7.0 3.2
6.4 3.2

setosa

setosa
versicolor
versicolor

The class labels are used to compute the mean values for each class in each

dimension:

Sepal.Length

Sepal. Width

MeAN setosa 5.0
Meanyersicolor 6.7

3.25
3.2




The X’ matrix can be built as an extension of the original data X as following;:

Original Extended
diml | dim2 | extl | ext2 | Species
5.1 3.9 5.0 | 3.25 setosa
4.9 3.0 5.0 | 3.25 setosa
7.0 3.2 6.7 | 3.2 | wversicolor
6.2 3.0 6.7 | 3.2 | wversicolor

Both original and extended space will be combined together to decide the
distance metric for DR. Although we use class as an example statistical
value for z;; in the above example, it should be noted that z;; can be many
other statistical values such as median or other form of averages. An effective
approach would be to decide which statistical values to use for each dimension
based on the data distribution. Detailed discussion relating to this issue can
be found in [8]. For all the experiments in this paper we extend mean values
based on class labels for simple illustration purpose.

3.2. Weighted extension of the feature space

Having the data matrix X and labels y (see Equation 6), as explained
above, the extended data matrix X’ is defined by the original matrix X and
the extended part X as follows:

X' = [X | X} 8)

Assuming the extension of the whole set of features and using mean values
of each class labels, X’ € R™*2?_ In this case, X is composed by the centroids
of the corresponding class described by the labels.

- 1
X =[] € R™? being X; = ]C_ Z Zij (9)
Yi

i€Cy,

where C), is the set of indices of samples belonging to class y;.

A real parameter \ € [0, 1] allows the gradual transition between original
data (X) and the extended part (X) by applying a simple change in the
metrics of the extended feature space given by Xyeigne = X'W,, being the

matrix W), € R2¥24 55 follows:

WA:(O_O)‘)II)\OI),/\GR (10)
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Therefore, Xyeignt is the weighted data matrix used for computing low-
dimensional embedding. The parameter A can be changed interactively so
that the user can trade between inter-class and intra-class topological orga-
nization of data. In this way, with A = 0 the projection reveals the structure
to the original dataset and with A = 1 only to the applied extension. Thus,
a good starting point for this analysis is the weighted extension of the whole
feature space so that the analyst can change easily the embedding or return
to the original. This is achieved only by interacting with A parameter to
obtain a more meaningful projection, assessed both visually and by quality
measures.

Note that our proposed method is independent of the DR technique that
computes the projection, hence it inherits the same level of computational
complexity of the applied DR technique. However, various scalability ap-
proaches that involve sub-sampling and approximation have been made to-
wards handling large data. For example, Li et al. [33] proposed a scalable
scheme that improves the efficiency of the Singular Value Decomposition
(SVD) process by first sampling a subset of columns from the input matrix
and then approximate SVD on the inner sub-matrix using matrix approxi-
mation algorithms. Yang et al. [34] proposed an optimization approach that
reduces the computational cost of Neighbor Embedding methods by comput-
ing close-by points individually but approximating far-away points by their
center of mass. Bunte et al. [35] proposed a relevance learning approach that
incorporates prior knowledge of the data such that the computational cost
can be saved by reducing the number of adaptive parameters. Our proposed
method can be used in conjunction with these methods to achieve better
scalability.

3.8. An illustrative example

Here a very simple example is presented to illustrate the proposed method.
The data consists of two Gaussian clusters of 150 points each with a small
overlap in 2 dimensions. The method is applied to the data following the
weighted extension of the feature space using the mean values for each class
corresponding to each cluster. The DR technique to compute the projections
is PCA. In Fig. 3 the resulting projections are represented for several values
of the parameter A. The projection for A = 0 corresponds to the original
data where the two clusters are not fully revealed. As the \ parameter in-
creases, the projection changes revealing the grouping information. Since the
distances inside of each cluster are not modified, the local structure in each
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Figure 3: Projections from the proposed method applied to 2D clusters data example
using PCA.

cluster is preserved for the new projections. For the highest value (A = 1)
the projection is purely based on the grouping information (mean value of
each cluster), therefore all the data points are pushed to the centroids of
corresponding clusters. Therefore this can be considered as a representation
of the classes distribution. For a correct interpretation of the original data
structure the projections for high values of A are not useful and can be ne-
glected. The interaction by means of the A parameter provides control to
the user and improves the exploration tasks. Moreover, a numerical evalu-
ation of the projection gives more information to the user in order to judge
the optimum point of the transformation, this is explained in more detail in
Section 4.5.

4. Experiments and Results

In this section we evaluate the proposed method with different datasets
and use cases. The datasets are selected representing data of various dimen-
sionality, number of classes, synthetic and real (see Table 1). Four use cases
are designed to test the method from different perspectives, including:

cl: synthetic vs. real data - the first use case applies the method on two
synthetic examples, the remaining use cases are applied on real data.

c2: time series data - this use case shows an example of improving visual
clarification of projections for analyzing patterns in time series data.

c3: extending full feature space vs. selected features - the third use case
demonstrates the potential of improving the effectiveness of the ap-
proach by extending only a subset of the features based on knowledge
and understanding about the data.
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Name Size Dimensions Classes

3D clusters 500 3 bt
synthetic-gaussian 500 10 )
eCons (Weekday) 338 24 7
eCons (Month) 338 24 12
hiv 78 159 6
yeast 1452 7 10

Table 1: Description of data

c4: supervised vs. unsupervised DR - the last use case applies the method
on two supervised DR methods, while the other use cases apply unsu-
pervised DR techniques.

All the experiments start with an original projection generated by a stan-
dard DR technique with A value set to 0. For unsupervised DR we apply
PCA and t-SNE that are widely used by the visualization community for
explorative data analysis. For supervised DR we choose two recent advances
including NCA and MCML as introduced in Section 1. The original feature
space is extended using the weighted extension strategy as described in Sec-
tion 3. All the projections were computed using Matlab implementations of
DR algorithms from the toolbox [2] or the original authors. The projections
of the original and extended feature space are computed using the same DR
technique with the same parameter setting, after a z-score normalization.
Where the t-SNE technique is applied and the new projection requires the
perplexity parameter to be updated, we regenerate a new projection using
the new parameter setting to replace the original projection for comparison.
Since the performance of t-SNE is quite robust in terms of variation on per-
plexity values, such updates does not usually change the original projection
to a great extent. Mean and standard deviation of the quality measures
are computed after 10 iterations for this technique. In order to make more
comparable projections, a linear transformation determined by procrustes
analysis [36] is performed between projections.

Next we illustrate the results of the experiments. The evaluation of the
projections of these experiments are discussed in Section 4.5.
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Figure 4: Representation of 3D clusters data example.

4.1. Synthetic examples

4.1.1. 3D clusters example

To illustrate the idea conceptually, we apply the proposed method in a
synthetic dataset that contains 3 dimensions. The data consists of 5 Gaussian
clusters each containing 100 samples. Fig. 4 shows the original structure of
the data in a three dimensional coordinate system. As shown in the figure,
the top three clusters (colored in navy, cyan and orange) are well separated,
but the two clusters at the bottom of the display (colored in blue and green)
overlap against each other.

Based on the cluster labels a series of weighted feature extension were
added to the original data, with the weight (A parameter) set to several
values. Fig. 5 shows two dimensional projections of the transformed data
generated using PCA (upper) and t-SNE (lower) technique with a perplexity
value of 20.

As as one can see from the figure. The process of transforming data by
integrating group information modifies the original data space in such a way
groups are better separated in the projection. In this particular example,
when the values of \ is between 0.4 and 0.6, both DR techniques gener-
ate projections with clear group separation. Naturally when A\ value is 0,
the projection is purely based on the original data, hence in terms of the
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Figure 6: t-SNE projections of synthetic-gaussian dataset with weighted extension for
several A values using cluster information with a perplexity of 15.

preservation of the original data structure, there is no difference between the
proposed method and the standard DR technique that is applied for generat-
ing the projection. Furthermore, it can be considered as an initial reference
view to compare the new projections obtained by the method.

4.1.2. Synthetic gaussian example

In this experiment a synthetic dataset is used to evaluate the proposed
method in a simple scenario. The data consists of 5 random Gaussian clusters
of 10 dimensions and is generated from the work in [37]. Fig. 6 shows the
resulting projections computed using t--SNE technique with a perplexity value
of 15. Different colors and markers are used to distinguish the 5 different
clusters. As one can see, compared to the projection of the original data, the
projections of transformed data (with A values between 0.2 and 0.4) provide
a clearer separation of clusters. Even without color coding, it would not be
difficult for the analyst to identify the patterns revealed in the projection.

Similar projections can be obtained using ¢t-SNE for high values of A. This
is due to the fact that -SNE aims at preserving both the local and global
structure, where the importance of modeling the separations of datapoints is
almost independent of the magnitudes of those separations [38].

4.2. Time series data

In the second use case we use the eCons data that records the active
power usage at a university building over a year. The dataset is aggregated to
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338 days (samples with missing values removed) and 24 attributes (value for
each hour per day). The task is to identify different types of daily consump-
tion patterns. In this experiment different types of temporal information,
such as weekday or month, are incorporated into the resulting projection.
The analysis of daily consumption patterns was addressed previously, in [39]
where a calendar view combined with cluster information is used for an ef-
fective exploration of time series data. While the calendar view provides a
good platform for univariate time series analysis, in this case our approach
is designed more towards projecting multivariate data with the flexibility of
adjusting time intervals and selection of class knowledge.

Two types of class labels are considered: classes corresponding to the
type of the weekday (1-Sun; 2-Mon; ... 6-Fri; 7-Sat); and the corresponding
month (1-January; ...12-December), respectively.

First we analyze the data based on days of the week. The projections
are computed using t-SNE with perplexity value set to 20. Different colors
are assigned to different days of the week. In the projection of the original
data for A = 0, one can easily see two distinct groups (see Fig. 7, top).
The result can be interpreted as “working days” and “non-working days”.
However in the embedding of extended data for A\ = 0.2 (see Fig. 7, top),
we see more interesting patterns, for example, most of the Mondays (blue
triangle) appear to be in a separate cluster. Furthermore, the “non-working
days” cluster splits into “weekends” and “bank holidays” clusters.

At the bottom of Fig. 7 an analogous analysis of the same dataset is
shown. In this figure, colors are used to differentiate which months does a
date belong to. The projections are again generated using ¢-SNE and the
perplexity value is set to 20. The projection of the original data (left) shows
two distinct groups (high- and low-consumption clusters) as in the previous
case. Fach group with a mixture of dates that belong to different months.
However the projection of the extended data (A = 0.4) further separates
August dates from the rest of the points revealing a remarkable behaviour
inside the low-consumption cluster. This could be explained by the university
holiday period throughout August. In addition, months such as February,
March and October show different consumption patterns from the rest.

Note that the new projections modify the location of the points from orig-
inal clusters taking into account the information that the user incorporates.
In this case, the same initial projection, showing two main clusters of daily
consumption, is modified by two different criteria (weekday and month), that
divide these groups revealing the introduced information hierarchically with
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Figure 7: t-SNE projections for eCons dataset with a weighted extension applied for
several values of A using weekday (top) and month (bottom) labels.
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Figure 8: Projection with extended data by month (left) and zoomed representation of
the projection (right), showing the features of each item as a sparkline, original (blue) and
extended (red).

respect to the original.

Fig. 8 shows a part of a similar projection where the values of the fea-
tures are plotted as a sparkline over each item, the original values (in blue)
and the extended values (in red). This allows an easy comparison between
similarities of the projected points. Points inside a class are topologically
organized by intra-class similarities, which are given by the original features
(blue). The inter-class organization between classes varies depending on the
extended values (red) according to the value of A, whose highest value (set
to 1) corresponds to the pure projection of the centroids of the classes.

4.8. Extension of selected features

In this experiment we investigated the effect of simple extensions based
on selected features using the yeast dataset [40] which is commonly used by
ML and the visualization community as a benchmark dataset. The main
task is to predict the localization site of proteins. Given the class labels,
one thing the analyst can do is to study the distribution of the data values
over different dimensions and detect discriminative features. This can often
be achieved by examining visual representations of the distributions such
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Figure 9: PCA projections for yeast dataset with a weighted extension of feature 4 for
several values of A using classes information.

as box plots or parallel coordinates. Furthermore other strategies of feature
selection [41] can be used in cases where a multidimensional visualization can
not be performed, such as relevance learning [35] or even domain knowledge
of the user. In the current example, it is observed that objects in class 5 tend
to have high values in dimension 4. This leads to our next experiment to
extend only one feature —class mean of dimension 4- to see if the extended
feature space leads to better visual quality.

Fig. 9 shows the resulting projections of the extended feature space using
PCA. The left figure of A\ = 0 is the projection of the original data. The rest
projections are based on the weighted extension of mean values of dimension
4 over different classes. As one can see, overall the projection for A = 0.6 is
less cluttered. In particular, class 5 (in green) is much better separated from
the rest of the classes.

The selection of a suitable A value is made not only using a visual in-
terpretation of the projection by the user, but also its evaluation performed
by quality measures. The selection of this parameter takes into account the
visual improvements of the projection whilst generally preserving the struc-
ture. In Fig. 10 the evolution of the measures used here can be seen for
different values of X\. As the average of k-ary measure (Quuy) equal to 1
means a perfect embedding, 1 — Q44 is taken in order to show all lines with
similar trends, i. e. the lower the value the better. It can be seen, with the
evolution of A, a remarkable improvement of visual measures (overlap area
and density) and slightly worse structural measures (stress and k-ary). In
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Figure 10: Quality measures of PCA projections of yeast data using weighted extension
of the feature 4 for several values of A.

this case, the analyst may want to select A = 0.6 because it is the lowest A
parameter value that provides visual enhancements with small variations for
the rest of the measures.

4.4. Supervised DR methods

In the last experiment we applied two supervised DR techniques, NCA
and MCML, on some of the selected datasets. The same class information
is used for the projection both the original data and data with weighted
extensions.

3D clusters example. The method is applied to 3D clusters example from
Section 4.1.1, the resulting projections with several values of A\ are displayed
in Fig. 11 for both techniques NCA (first from the top) and MCML (second).
The regularization parameter of NCA is set to 0. As it can be seen in the
figure, the weighted extension emphasize the class separation using both DR
techniques in a similar way.

synthetic-gaussian dataset. Fig. 11 (third from the top) shows the projec-
tions generated using MCML. As one can see, even with a supervised DR
method, the original data projection can be still quite cluttered (A = 0). By
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transforming the original feature space with weighted extension (in this case,
A = 0.4), the group visual quality can be improved substantially.

hiv. The hiv dataset, which was used in [31], describes socio-economic prop-
erties of countries that are classified into HIV risk groups. The data has 159
attributes and contains objects that belong to 6 different classes. We project
the data using NCA, in this case its regularization parameter is set to 0.001.
The resulting projections are shown in the fourth projections of the Fig. 11.
Again, although the groups are well-separated in the original projection, the
projection with A = 0.2 enhances the inter-group separation.

yeast. Fig. 11 (bottom) shows the projection of this dataset using MCML.
While the projection based on the original dataset is rather crowded and
one can hardly see any patterns, the projection of extended feature space
(A = 0.4) provides a much clearer view of the grouping information in the
data.

4.5. Fvaluation of embeddings

The performance of the projections is evaluated by arithmetic measures,
described in Section 2.2. In this paper we select four measures, including
the Sammon’s stress [24] and k-ary [27] measure for assessing the structural
preservation, and the overlapping density and overlapping area measures [§]
for assessing the visual clarification. Although other approaches that repre-
sent the structural preservation and distortions could also be used for ana-
lyzing the quality of the result projections [42, 43].

The measures were computed for projections obtained using several values
of A\. They are represented in line charts, similar to Fig. 10, where lower values
imply improvements in the measures. Figures 12 to 15 graphically show the
measures for synthetic-gaussian, hiv, eCons (Months), and yeast datasets,
respectively. The measures for PCA and t-SNE techniques are shown at the
top and similarly for NCA and MCML methods at the bottom. Out of the
range values were scaled in order to an effective comparison.

The result shows that in general extending feature space using class re-
lated statistical values leads to better visual quality in the final projection.
Less overlapping points (reduced overlapping density measure), and group
boundaries are overlapped less (reduced overlapping area measure). The
data structure is less well-maintained in the new projection, especially the
global pairwise distance (as indicated by the Sammon’s stress measure). On
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(bottom) for synthetic-gaussian dataset
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Figure 13: Assessment measures using PCA, ¢-SNE (top), NCA, and MCML methods
(bottom) for hiv dataset
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Figure 15: Assessment measures using PCA, ¢-SNE (top), NCA, and MCML methods
(bottom) for yeast dataset
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the other hand, in many cases the k-ary measures stay reasonably unchanged
after transformation which means overall structural preservation in terms of
both global distance and local neighborhood. The quality evaluation helps
the analyst better understand the distortion caused by the transformation,
and evaluate the quality gain in terms of visual clarification. A trade-off
can be made fairly easily if a similar “quality graph” is provided during the
analysis process.

Besides, the A value itself gives a good indication of the “degree of dis-
tortion”. By modifying the A\ parameter the user can gradually control the
extension or come back any previous point. This allows one to track the
variations in the projections by smooth transitions, and to be aware of the
trade-off between the original structure preservation and visual quality.

In addition to evaluate the projections with the quality graph explained
before, there are more approaches that can be used to visualize the quality
in the projection. For instance, the evaluation of a Self-Organizing Map can
be visualized employing the U-Matrix [44]. This idea provides information
to the user about the underlying structure preservation with respect to the
original data into the embedding. In a similar way, a point-wise quality eval-
uation is proposed in [42] using a rank-based criteria that allows to highlight
erroneous regions in the visualization. Using this approach, a mean error can
be computed for each point and encoded as color in the projection. In Fig.
16 this evaluation of the quality is shown for the eCons data example with
the labels of weekday where some points reveal worse structural quality with
the appliance of the method. This useful visualization helps the user to be
aware of the errors so that the control parameter can be set in a final value
easily with a direct evaluation of the projection.

5. Discussion

Given an initial projection, the proposed approach allows the user to
generate new projections with improved visual quality by integrating new
group information into the DR process, assuming the new information is
validated by the user and provides knowledge related to the analyzed tasks.
The method can be applied when the grouping information can not be fully
revealed by the distance measures that are used to compute the projection
due to noise and irrelevant information. Another advantage of the proposed
method is the preservation of local structure. As the distances between points
within to the same group are not altered by the transformation, new projec-
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Figure 16: Point-wise quality visualization for the evaluation of the example with eCons
(weekday) dataset for several A values.

tions based on transformed data preserve the local structure in the original
data. In addition, the DR assessment using numerical quality measures (see
Section 4.5) gives an idea of the structural variations with respect to the
original data and the visual improvements produced by the method.

From the visualization point of view, one may argue that given group-
ing information it is easier to use color or shape to differentiate groups in
the projection. However, the color-coding and shape-coding approach do
not solve the cluttering problem. When points are over-plotted in a visual
display, the readability of the projection is still not much improved. Our
approach helps to reduce cluttering in the projection and provides a more
efficient visual channel for assessing relative distances between objects and
classes. Furthermore, using space to separate classes makes it possible to
apply other interaction mechanisms such as hovering over points to get con-
textual information or area selection to calculate aggregated values.

The transformation process is controllable via a weighting parameter \.
When A = 0, the projection is purely based on the original data. As A value
enlarges, the method gradually increases the influence of the grouping infor-
mation. When A value reaches 1, only class information is used for computing
projection hence all points collapse to their corresponding centroids. The an-
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alyst can start with an initial projection (A = 0) and gradually increase the
A value in order to achieve clearer group separation in the projection space.
Such a process can be easily facilitated by an interactive graphical interface
with a sliding bar.

The role of interaction is a key aspect within this context. The interactive
changes of X\ values allow the user to go back and forth as much as needed.
This reversible process helps to keep in mind the initial reference view at each
stage. In addition, the smooth variations of the points allow a continuous
object tracking that can be performed with animation improving its graphical
perception [45]. The user can examine the original data structure (A = 0),
the projection of class centroids (A = 1), and intermediate views (0 < A < 1)
that allow to get new insights not available with a single DR tool. This
not only can be used to achieve an interactive grouping separation but also
to understand which part of the overlap of the classes is produced by the
projection or is an actual characteristic of the multidimensional data. We
further note that appropriate methods for visualization of projection qualities
(e.g. based on projection stress), have been developed [44, 46, 47, 42, 43] and
can be combined with our interactive approach. Especially in combination
with interactive setting of A values, a dynamic visualization of projection
quality will help the analyst to assess the distortion introduced and strike a
balance between data distortion and a de-cluttered projection.

For the interactive approach, it is always desirable to have smooth tran-
sition between views when the A value is updated. This can be challenging
due to computational time required to generate new projections, especially
when the data is large in size and/or dimensionality. For example, PC'A
has a complexity of O(d®) where d is the number of dimensions, so when
the dimensionality of data is very high, some preprocessing stage such as
feature selection may be required to reduce the dimensionality of the data.
Another example is the t-SNE approach, the original t-SNE algorithm has a
complexity of O(n?) where n is the number of objects in the data. Although
some recent work reduced the complexity of t-SNE to O(nlogn) [34, 48], the
method can still fail to support smooth transitions when n is large. In such
case, sampling may be needed prior to the computation to reduce the com-
putational load. Another possible solution to improve the scalability of the
proposed approach is to pre-compute a series of projections with increasing
A values.
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6. Conclusions

In this paper we propose a simple but effective approach that supports
projection-based data analysis. The proposed interactive analysis frame-
work extends traditional dimensionality reduction approaches that transform
multi-dimensional data to a lower-dimensional visual display as a static view
to an interactive visual display that allows the analyst to gradually modify
the projection by incorporating grouping information. The proposed ap-
proach differs from traditional supervised DR methods in such a way that
the user has more control over the analysis process. For example, they per-
form an extension of the features based on classes information and adjust
the weight between original and extended feature space before projection so
that the influence of class knowledge can be changed in the final projection.
To bring more transparency to the analysis, the framework also integrates
various quantitative measures to help analysts judge the quality of generated
projection both in terms of structural preservation and visual clarification.

A number of experiments were carried out to evaluate the effectiveness of
the proposed approach, covering different types of datasets, both supervised
and unsupervised DR techniques, under different weighting conditions, and
under different use case scenarios. The resulting projections are evaluated
both visually and using quantitative measures that compute the structural
preservation and visual quality. The experimental results indicate that the
proposed methods not only lead to improved visual quality but also preserve
the local neighborhood reasonably well. The resulting projections show the
incorporation of meaningful information in a transparent manner. This pro-
vides efficiency in the visual analytics process for pattern recognition, fast
identification of class labels and a better understanding of the data.

Future work includes exploring more interactive visualization techniques,
the design of more sophisticated extension strategies that are tailor-made
to the nature of data for improving the effectiveness of the methods, and
to develop a wider range of quality measures for evaluating the projections.
Moreover, a user study is planed to ascertain the usability of the proposed
technique.
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