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Abstract 

This study explores the channels through which technological investments affect productivity 

performance of industrialized economies. Using a Stochastic Frontier Model (SFM) we estimate the 

productivity effects of R&D and ICT for a large sample of OECD industries between 1973 and 2007, 

identifying four channels of transmission: input accumulation, technological change, technical 

efficiency and spillovers. Our results show that ICT has been particularly effective in reducing 

production inefficiency and in generating inter-industry spillovers, while R&D has raised the rate of 

technical change and favoured knowledge spillovers within sectors. We also quantify the contribution 

of technological investments to output and total factor productivity growth documenting that R&D 

and ICT accounted for almost 95% of productivity growth in the OECD area. 
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1. Introduction 

What do we know about the drivers of productivity? What are the channels through which innovative 

investments translate into better productivity performance? The economic growth literature still 

debates which factors produce long-lasting effects on productivity and explain cross-country 

productivity differentials (Madsen, 2008; Cette et al., 2016). The latest theories of endogenous growth 

highlight the importance of innovation activities in raising the rate of productivity growth, and hence 

living standards, in the long run (Aghion and Howitt, 1998; Dinopoulos and Thompson, 1998). In the 

empirical literature, innovative activities, typically proxied by investments in Research and 

Development (R&D), have long played a major role in boosting productivity performance at the 

country, industry and firm level (Griliches, 1979 1988; Patel and Soete, 1988; Guellec and Van 

Pottelsberghe, 2004; O’Mahony and Vecchi, 2009). Investments in R&D increase a country’s 

competitive advantage, promote the international transfer of technological competences and intensify 

market competition, hence contributing to the growth of the so-called knowledge economy 

(Archibugi and Coco, 2005). 

 Since the mid-1990s, research has also focused on Information and Communication 

Technologies (ICT) and various contributions have shown that these assets are another important 

source of productivity growth in industrialized countries (O’Mahony and Vecchi, 2009; Venturini, 

2009). ICT is often regarded as the main infrastructure of the knowledge (R&D-based) economy. 

However, the literature seldom considers its role next to the role of R&D (Polder et al., 2017). 

Exceptions include Hall et al. (2013) and Venturini (2015), who find that both ICT and R&D have 

positive but independent effects on Total Factor Productivity (TFP). Conversely, Corrado et al. (2017) 

document the presence of complementarities between ICT and intangible capital, which includes 

R&D and other innovative activities. Therefore, the empirical analysis so far does not provide a clear 

indication of the joint role of R&D and ICT or the different channels through which they affect 

productivity performance. The main objective of the present paper is to fill this important gap in the 
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literature by investigating the productivity effects of both R&D and ICT and accounting for the 

possible ways in which these factors operate.  

 Thus far, the literature has analysed two main channels through which R&D and ICT can 

affect performance: first, an input accumulation channel, which focuses on the importance of capital 

deepening and on the productivity-enhancing effect of investments in knowledge assets. Second, a 

spillover channel, which recognises the possibility that technological investments promote the 

diffusion of knowledge across firms, both within the country and internationally (Coe and Helpman, 

1995). The empirical evidence strongly supports the role of R&D as a factor of production and its 

ability to generate spillovers (Ugur et al., 2016). As for ICT, the evidence initially understated the 

extent of the input accumulation channel (Gordon, 2000), but a second wave of studies has 

documented that ICT is a significant driver of productivity growth (O’Mahony and Vecchi, 2005; 

Kretschmer, 2012).1 The evaluation of the spillover potential for ICT has been more challenging. 

Stiroh (2002a) documents the absence of a relationship between ICT and TFP for the US, whilst 

Haskel and Wallis (2013) and Inklaar et al. (2008) provide similar evidence for European countries. 

Firm-level analysis is more supportive of the role of ICT spillovers, but contributions are still limited 

to single-country studies (Brynjolfsson and Hitt, 2003; Tambe and Hitt, 2014; Marsh et al. 2017).   

 A typical feature of this literature is the assumption that factor inputs are fully utilized and 

that there is no slack in production, i.e. all economic units are fully efficient (Greene, 2008). This 

assumption hides a potential third way in which R&D and ICT affect productivity, namely via their 

impact on technical efficiency, defined as the optimal combination of inputs to produce a given level 

of output. The evidence on the impact of R&D and ICT on production efficiency is sparse. Kneller 

and Stevens (2006) show that R&D investments affect the rate of technical change (i.e., they shift the 

production frontier outward) but they leave technical efficiency unchanged (i.e., they do not reduce 

the gap with the frontier). Bos et al. (2013) illustrate that R&D contributes to higher efficiency levels 

                                                             
1 A recent contribution by Polák (2017) shows that the productivity effect of ICT may be lower than estimated in the post-

1990s literature.   
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in mature industries, while it decreases efficiency in young industries. As for ICT, the General-

Purpose Technology (GPT) literature has emphasised the link between new technologies and 

organizational changes (Jovanovic and Rousseau, 2005; Bresnahan and Trajtenberg, 1995). In fact, 

ICT has created opportunities for gathering and sharing information, both within and outside the firm, 

reducing administrative costs and improving supply chain management (Rowlatt, 2001; Criscuolo 

and Waldron, 2003). Hence, it is reasonable to assume that these developments contribute to a more 

efficient use of factor inputs within the production process. However, only a handful of papers have 

provided evidence in this respect. Becchetti et al. (2003) and Castiglione (2012) show that ICT 

investments reduce inefficiency in Italian firms. Papaioannou and Dimelis (2017) find a similar result 

at industry level but show that the effect of ICT is weaker in high-tech sectors. Using a cross-sectional 

sample of Italian companies, Bonanno (2016) relates both R&D and ICT investments to production 

efficiency, finding a positive effect for both technological assets. 

 Potentially, there is also a fourth channel of impact for R&D and ICT. These investments may 

expand the set of productive possibilities by enhancing the rate of technical change. Since the seminal 

work by Solow (1960), scholars have recognised that technical change may not be neutral but specific 

to firms’ investments in new vintages of capital goods that embody the latest technologies (so-called 

investment-specific technical change). For example, Greenwood et al. (1997) illustrate that, in the 

US, the largest proportion of output growth is due to technical change embodied in machinery and 

equipment. Samaniego (2007) extends this analysis to investments in knowledge assets, finding that 

R&D-driven technical change is the main determinant of output growth. Venturini (2007) and 

Martínez et al. (2010) model the effect of ICT - specific technical change in promoting productivity 

growth in modern economies.  

This paper investigates the impact of R&D and ICT on productivity performance, using a large 

panel data set covering fourteen countries and nineteen industries for the period between 1973 and 

2007. Our analysis accounts for the four channels discussed above - input accumulation, spillovers, 

technical efficiency and technical change – within the same analytical framework. This relies on a 
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Stochastic Frontier Model (SFM), which allows the joint estimation of the different channels, as well 

as the quantification of their contribution to productivity growth. Throughout the analysis we control 

for cross-sectional dependence, which may be induced by increasing globalization and multilateral 

interconnection through historic, geographic and trade relations (Mastromarco et al., 2016; Eberhardt 

et al., 2013).  

Our results show that R&D and ICT increase productivity levels through different transmission 

mechanisms. R&D drives productivity through all the proposed routes, whilst ICT operates via 

investment-specific technical change and efficiency before 1995 and input accumulation after 1995. 

Our analysis provides evidence of important spillover effects associated with both R&D and ICT, 

and supports the presence of complementarities between R&D and ICT in reducing inefficiencies in 

production. In addition, we document that the nature of the efficiency impact of R&D changes with 

the technology intensity of production. Specifically, R&D investments have detrimental effects on 

efficiency in high-tech but positive effects in low-tech industries. Conversely, ICT raises efficiency 

levels in all sectors. Finally, we quantify that R&D and ICT investment contributed 95% of TFP 

growth in OECD countries, a result that unequivocally points to a key role for these technological 

assets in the knowledge economies. 

This study relates to the literature on the drivers of productivity and the key sources of 

competitiveness in the global economy, offering important insights into the debate on the secular 

stagnation of productivity growth (Gordon, 2016; Jorgenson et al., 2016). We also contribute to those 

studies investigating whether returns to innovation change with technological opportunities and 

appropriability conditions (Terleckyj, 1974; Nelson, 1988; Ngai and Samaniego, 2011). Finally, our 

results add to the new literature on the impact of intangible assets on TFP growth, by detailing the 

transmission mechanisms via technical change and technical efficiency that have been largely 

unexplored to date (Corrado et al., 2017; Niebel et al., 2017). Hence, our analysis sheds light on how 

investments in intangibles, which include both R&D and computerized software among others, 

translate into greater productivity outcomes. Identifying the drivers of productivity growth and the 
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different transmission mechanisms can be crucial for the design of policies aimed at improving 

growth performance (OECD, 2015).  

The structure of the paper is the following. Section 2 draws the theoretical underpinnings of 

the link between R&D and ICT investments and productivity. Section 3 introduces our analytical 

framework, showing how ICT and R&D influence productivity performance within a SFM 

framework. Section 4 describes the data and presents a descriptive analysis. Section 5 presents the 

main results and discusses robustness tests. Section 6 quantifies the contribution of R&D and ICT to 

productivity growth and offers some insights for policymaking. Finally, Section 7 concludes the 

paper.  

 

2. Background  

The positive relationship between innovation and productivity performance is indisputable. 

Since the seminal works by Griliches (1958) and Evenson (1968), investments in R&D have been 

considered among the main drivers of TFP growth, i.e. the increase in output which is not accounted 

for by changes in labour and capital inputs. Many papers have concluded that R&D-based innovation 

yields positive effects on the productivity of innovators as well as on that of “related” 

firms/industries/countries in the form of knowledge spillovers (Mairesse and Sassenou, 1991; 

Sveikauskas, 2007; Ugur et al., 2016). R&D has also been considered one of the sources of absorptive 

capacity, which refers to the ability of companies to effectively benefit from the new knowledge 

created in neighbouring firms or industries (Griffith et al., 2004; Bos et al., 2010; O’Mahony and 

Vecchi, 2009).  

Since the mid-1990s, the debate on innovation and productivity has concentrated on the new 

paradigm of the knowledge-based economy, which focuses on knowledge generating activities as the 

main source of firms’ competitive advantage. The defining features of the knowledge-based economy 

are: i) a more systematic exploitation of knowledge by profit seeking companies; ii) greater transfers 

of material and immaterial resources driven by ICT advances; iii) an accelerated pace of global 
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competition (Archibugi and Coco, 2005). This paradigm fully acknowledges the role of both R&D 

and ICT in promoting the development of the knowledge economy, which in turns leads to an 

acceleration in productivity growth. Since 1995 productivity has accelerated in the US, the country 

at the forefront of the digital revolution, with European countries expected to follow, albeit with a lag 

due to lower investments in R&D and later adoption of ICT (Daveri, 2002).  

 The literature has also highlighted the presence of heterogeneous returns to R&D and ICT 

across different industries. Firms operating in technologically advanced (high-tech) productions are 

able to reap larger benefits from their R&D investments (Griliches and Lichtenberg, 1984; 

Kumbhakar et al., 2012; Sterlacchini and Venturini, 2014). This is due to either different 

technological opportunities and appropriability conditions (Levin et al., 1985; Jaffe, 1986); different 

demand conditions, level and cumulativeness of knowledge (Malerba and Orsenigo, 1996; Malerba, 

2002); or the different technological environments in which innovative activities take place 

(Castellacci and Zheng, 2010). As for ICT, the literature shows that the impact of ICT investments 

on productivity growth is higher in sectors that produce or intensively use ICT capital goods (Stiroh, 

2002b). These include very diverse industries such as ICT manufacturing and market services 

(Timmer and Van Ark, 2005; Inklaar et al., 2008) Hence, accounting for industry heterogeneity is 

crucial to understand the impact of innovative activities on productivity performance. 

The literature has also focused on how new digital technologies promote innovative activities, 

hence putting forward the concept of complementarities between R&D and ICT (Ding et al., 2010). 

For example, Kleis et al. (2012) estimate that a 10% increase in ICT investment raises patenting 

returns of R&D by 1.7%, and that this effect has become stronger from the midst of the 1990s. Other 

contributions have looked at whether ICT magnifies returns to R&D and other intangibles 

investments (Chen et al., 2016; Corrado et al., 2017), facilitates knowledge spillovers (Zhu and Jeon, 

2007) or promotes international R&D collaborations (Forman and van Zeebroek, 2012). However, 

the evidence on the role of ICT, next to that one of R&D, on productivity performance is still weak 

(Polder et al., 2017).  
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In the reminder of the paper, we address these important issues by including both R&D and 

ICT in our analysis of productivity and allowing for differences in their impact over time and across 

different types of industries. Our methodological framework accounts for different channels through 

which R&D and ICT operate, which are discussed in detail in the next section.  

 

3. Analytical framework  

3.1 A stochastic frontier production model 

We base our analysis on a frontier production function, which identifies the maximum output 

achievable, given the current status of production technology and the amount of available inputs2. In 

a panel data setting, the maximum output (𝑌𝑖𝑗𝑡
∗ ) is the boundary level of a common production set 

and, hence, we can express the frontier as (Bos et al., 2010): 

𝑌𝑖𝑗𝑡
∗ = 𝑓(𝑋𝑖𝑗𝑡; 𝛽)exp⁡(𝑣𝑖𝑗𝑡)                               (1) 

where i’s denote industries, j’s countries, and t’s time observations. 𝑋𝑖𝑗𝑡  identifies the set of 

production inputs, 𝛽 is the vector of technology parameters, whilst 𝑣𝑖𝑗𝑡 ⁡is an i.i.d. error term. The 

disturbance term is distributed as a 𝑁(0, 𝜎𝑣
2), capturing the effect of unobserved random shocks and 

measurement errors. Industries that lie below the frontier are characterised by production inefficiency. 

Therefore, we can define their output as the frontier output multiplied by an inefficiency term 

measuring the deviation (gap) from the frontier, 𝑌𝑖𝑗𝑡/𝑌𝑖𝑗𝑡
∗ = exp(−𝑢𝑖𝑗𝑡):  

𝑌𝑖𝑗𝑡 = 𝑌𝑖𝑗𝑡
∗ exp(−𝑢𝑖𝑗𝑡) = 𝑓(𝑋𝑖𝑗𝑡; 𝛽) exp(𝑣𝑖𝑗𝑡) exp(−𝑢𝑖𝑗𝑡).               (2) 

We assume that the inefficiency term is positive (𝑢𝑖𝑡 ≥ 0), identically distributed as a half-

normal and independent from the noise term, 𝑣𝑖𝑗𝑡. These distributional assumptions are necessary to 

identify technical inefficiency separately from the standard noise (Kumbhakar and Lovell, 2000). In 

                                                             
2 Seminal contributions to stochastic frontier models are Aigner et al. (1977) and Meeusen and van den Broeck (1977). 

See Greene (2008) for a comprehensive review.  
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the light of these hypotheses, the inefficiency term ranges between 0 and +∞, taking the value of 0 

for the fully efficient (frontier) industries.  

The model described in eq. (2) has three key properties (Kneller and Stevens, 2006; Bos et al., 

2013). First, the frontier is determined empirically at each point in time by a set of industry-country 

pairs.3  Second, the frontier is stochastic, due to the inclusion of 𝑣𝑖𝑗𝑡 , and hence is suitable for 

statistical inference and hypothesis testing. This makes our model different from the non-parametric 

approach of analysis employed by Fӓre et al. (1994), Kumar and Russell (2002), and others. Third, 

by using the SFM, we can identify contributions (and relative importance) of technical change and 

efficiency change to TFP growth.     

 We specify the frontier as a translog production function, taken in logs (logged variables in 

lower case letters), as follows:  

𝑦𝑖𝑗𝑡 =∑𝛽𝑛 ∙ (𝑥𝑛𝑖𝑗𝑡) +

𝑛

1

2
∑ ∑ 𝛽𝑛𝑝 ∙

𝑝
(𝑥𝑛𝑖𝑗𝑡𝑥𝑝𝑖𝑗𝑡)

𝑛
+𝑡𝑓𝑝𝑖𝑗𝑡 + 𝛼𝑖 + 𝜇𝑗 + 𝑣𝑖𝑗𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡(3) 

 We assume that output production depends on three inputs, namely labour, ICT capital, and 

non-ICT capital (𝑛, 𝑝 = 𝐿, 𝐼𝐶𝑇, 𝐾) and the level of TFP. Our specification includes two sets of 

intercepts, 𝛼𝑖 and 𝜇𝑗, to control for unobserved (time-invariant) heterogeneity at industry and country 

level.  

 Next, we model TFP levels as a combination of three components (eq. 4). First, we assume 

that productivity performance depends on cumulative investments in R&D within the industry as 

proxied by R&D capital stock, 𝑅&𝐷𝑖𝑗𝑡⁡(Griliches, 1980). This term would capture within-industry 

R&D spillovers, i.e. excess returns to R&D associated with labour and capital inputs used in research 

departments. Second, TFP evolves as a result of technical change. This can be neutral, as captured by 

the time trend 𝑡, or investment-specific as measured by the interaction between 𝑅&𝐷𝑖𝑗𝑡 or 𝐼𝐶𝑇𝑖𝑗𝑡 and 

                                                             
3 In essence, we compare each industry with the set of industry-country pairs lying on the frontier. Conversely, the 

mainstream productivity literature defines the frontier as the (unique) industry-country pair with the highest TFP level 

(see Griffith et al., 2004; Minniti and Venturini, 2017 among others). 
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the time trend itself (𝑡 ∙ 𝑅&𝐷𝑖𝑗𝑡 and 𝑡 ∙ 𝐼𝐶𝑇𝑖𝑗𝑡). Lastly, a third component accounts for the distance 

from the production boundary, i.e. the inefficiency term (𝑢𝑖𝑗𝑡).  

𝑡𝑓𝑝𝑖𝑗𝑡 = 𝜃 ∙ ln𝑅&𝐷𝑖𝑗𝑡⏟        
⁡𝑅&𝐷⁡𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑠

+ (𝜌0 ∙ 𝑡 + 𝜌1 ∙ 𝑡 ∙ 𝐼𝐶𝑇𝑖𝑗𝑡 + 𝜌2 ∙ 𝑡 ∙ 𝑅&𝐷𝑖𝑗𝑡)⏟                        
𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑐ℎ𝑎𝑛𝑔𝑒

− 𝑢𝑖𝑗𝑡⏟
𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

⁡           (4) 

We obtain the production frontier by plugging eq. (4) into eq. (3). In our framework, 𝑅&𝐷𝑖𝑗𝑡 and 

𝐼𝐶𝑇𝑖𝑗𝑡 may affect efficiency via the variance of the distribution of the inefficiency term (Caudill and 

Ford, 1993):4  

log⁡(𝜎𝑢,𝑖𝑗𝑡
2 ) = 𝛿0 + 𝛿1 ∙ ln 𝐼𝐶𝑇𝑖𝑗𝑡 + 𝛿2 ∙ ln 𝑅&𝐷𝑖𝑗𝑡                          (5) 

 In summary, this setting extends the main framework used in earlier works by allowing ICT 

to impact on TFP via the investment-specific route (𝛽𝑖𝑐𝑡 in. eq. 1), via investment-specific technical 

change (𝜌1⁡in⁡eq. 4)⁡and via the efficiency route (𝛿1⁡in eq. 5). At the same time, we also account for 

the multifaceted effect of R&D, which operates via a within-industry spillover impact on TFP 

(𝜃⁡in⁡eq. 4 ), an effect on investment-specific technical change (𝜌2⁡in⁡eq. 4⁡)⁡ and on efficiency 

(𝛿2⁡in⁡eq. 5).
   

 

3.2 Estimation method and a preliminary test on the adequacy of the Stochastic Frontier Model 

We jointly estimate the parameters of the production frontier, (𝜷, 𝜃, 𝛒,𝛼𝑖, 𝜇𝑗), and of the inefficiency 

equation, (𝛅), via maximum likelihood, in a one-step procedure (Wang and Schmidt, 2002). 

A convenient parametrization to identify the impact of the efficiency determinants is to set 

𝜎𝑖𝑗𝑡
2 = (𝜎𝑢𝑖𝑗𝑡

2 + 𝜎𝑣
2) and λ = ⁡𝜎𝑢𝑖𝑗𝑡/𝜎𝑣 (Greene, 2008, p. 117). λ measures the relative contribution 

of the two components of the error term, 𝑣𝑖𝑗𝑡 and 𝑢𝑖𝑗𝑡. If this ratio is not statistically different from 

zero, there is no inefficiency in the data and hence the SFM is not suitable for our analysis. This 

                                                             
4 Our analytical framework has the advantage of (i) incorporating exogenous influences on efficiency and (ii) correcting 

for heteroskedasticity in the SFM. Uncontrolled heteroskedasticity in the inefficiency term would bias estimates of 

technology parameters (see Kumbhakar and Lovell, 2000, pp. 272-3). 
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condition can be checked by means of a likelihood ratio test. Our data strongly support the adoption 

of a frontier model (see raw 3, Table A.2 in the Appendix).5  

 Recent studies using stochastic frontier models have addressed the issue of the presence of 

unknown common factors creating strong dependency across panel units (Mastromarco et al., 2016). 

Examples of these unobserved factors include global shocks, such as financial factors or knowledge 

spillovers (Chudik and Fratzscher, 2011; Eberhardt et al., 2013). If unobserved factors are 

uncorrelated with the main regressors, failing to account for these effects leads to inefficient estimates. 

If such un-accounted factors are correlated with the regressors, estimates can be biased. Here, to get 

consistent estimates, we adopt the Pooled Common Correlated Effects (CCE) estimator, following 

Pesaran (2006). We therefore approximate the effect of unobserved common factors with the cross-

sectional averages of dependent and independent variables, and (initially) assume that such effects 

do not vary across the units of our panel sample. 

 

 

4. Data and descriptive analysis 

Our analysis uses industry-level data, extracted from the EU KLEMS database (O’Mahony and 

Timmer 2009) and the OECD ANBERD database. The sample includes fourteen OECD countries 

(Austria, Belgium, Denmark, Germany, Spain, Finland, France, Ireland, Italy, Japan, Netherlands, 

Sweden, UK and US). For each country, data are available for nineteen market industries.6 The final 

sample is unbalanced and covers the period from 1973 and 2007. Therefore, our analysis will provide 

an overall picture of industry performance in the pre-financial crisis period. 

                                                             
5 To validate our framework of analysis, we also carried out a battery of tests on the functional form, namely a translog 

vs a Cobb-Douglas production function. The likelihood ratio test on the null hypothesis that the parameters of second-

order terms are jointly insignificant is largely rejected (raw 1, Table A.2), validating our choice of using former 

specification. Notice that we also rejected the hypothesis of constant returns to scale (raw 2, Table A.2). 
6 Industry list (ISIC 3, Rev. 1 codes): Food and Beverages (15t16), Textile and Leather (17t19), Wood & Cork (20), Pulp, 

Paper and Printing (21t22), Coke, refined petroleum and nuclear fuel (23), Chemicals (24), Rubber and Plastic (25), Other 

non-metallic minerals (26), Basic metals, fabricated metal products (27t28), Machinery NEC (29), Electrical Equipment 

(30t33), Transport Equipment (34t35), Manufacturing NEC (36t37), Transport and Storage (60t63), Post and 

Telecommunication (64), Business Services (71t74), Wholesale and Retail (50t52), Financial Intermediation (65t67), 

Other Community and Social Services (90t93). 
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We measure industry output in terms of value added. Labour input is the number of hours 

worked. We distinguish between two components of fixed capitals, ICT assets (computers, 

communication equipment and software) and non-ICT assets (structures, transport equipment and 

other equipment). These stocks are built from annual investment flows by means of the perpetual 

inventory method and adopting an asset-specific rate of geometric depreciation. As a measure of 

R&D input, we use the cumulative value of industry research expenses; we construct this stock with 

the same method adopted for physical assets but imposing a standard depreciation rate of 15%. We 

express all monetary variables at constant prices and in purchasing power parities of 1997 (PPP) 

based on the industry output PPP deflator developed by Inklaar and Timmer (2008).  

 

 

Figure 1. Dynamics of R&D and ICT stock (1973-2007) 

 

  

 Fig. 1 plots average R&D (Fig. 1a) and ICT (Fig. 1b) stocks over the 1973 - 2007 period. For 

comparison purposes, we express these stocks in per worker terms and compute them as simple cross-

country, cross-industry averages. We present the average for the total economy and for high-tech 

versus low-tech sectors. The first group includes high-tech, medium high-tech manufacturing and 

knowledge-intensive services industries, whilst the second one includes low-tech, medium-low tech 

manufacturing and less knowledge-intensive services industries (Eurostat classification).7  

                                                             
7 http://ec.europa.eu/eurostat/cache/metadata/Annexes/htec_esms_an2.pdf 

Fig. 2a. Evolution of the average R&D stock per employee Fig. 1b. Evolution of the average ICT stock per employee 
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The figure illustrates the marked increase in the cumulative value of technological investments 

around the mid-1990s and the striking difference between the two industry groupings for both R&D 

and ICT. In high-tech industries, the accumulation of R&D stock accelerated between 1992 and 1997, 

and after a brief slowdown, this trend speeded up again in the late 1990s. The increase in ICT capital 

per worker was extraordinary since 1995, with important differences between industry types, which 

are however less pronounced compared to R&D. Jorgenson (2001) documents that the rapid diffusion 

of the new digital technologies was induced by the dramatic fall in ICT prices that originated in the 

stellar improvement in semiconductor products, resulting from an intensified competition and 

research activity in the semiconductor market. 

 Table 1 reports the average value of the variables used in the analysis (taken in absolute terms), 

for the overall time interval and distinguishing between the pre- and post-1995 period. On average, 

ICT stock amounted to one third of R&D stock (1,765 vs 5,823 of millions of USD) but grew much 

faster throughout the overall period between 1973 and 2007. Moreover, ICT capital accumulation 

accelerated by a factor of 2.4 since the mid-1990s (last column, Table 1).8  

 

Table 1. Summary statistics 

 

 

 

 

 

 

 

 

 

Note: monetary variables are expressed in millions of USD PPP 1997; hours worked are expressed in thousands.  

 

 

                                                             
8  Estimating an autoregressive model of ICT capital accumulation we find a statistically significant acceleration 

(structural break) after 1995, in line with the evidence provided by Stiroh (2002b) for the US (results available upon 

request). 

 
1973-2007 1973-1995 1995-2007 

Log-difference pre- 

and post-1995 

Value added 
28,400 19,827 38,418 

0.66 

Total hours worked 
1,072 987 1,172 

0.17 

Non-ICT capital stock 
10,543 8,070 13,433 

0.51 

ICT capital stock 
1,765 309 3,466 

2.42 

R&D stock 
5,823 4,173 7,751 

0.62 
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5. Empirical Results 

5.1 Baseline estimates 

Table 2 presents our first set of results. We divide the table into three panels. Panel A presents the 

estimation of the production function.9 Panel B reports the estimated impact of the inefficiency 

determinants, whereas panel C displays estimates of the standard deviation of the normally distributed 

error term.  

 

Table 2. Benchmark model: the impact of R&D and ICT on productivity and efficiency 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
9 Inputs and output are normalized by the mean correction (and taken in logs) so to make the translog frontier’s first-order 

coefficients interpretable as output elasticities. 

 
(1) (2) (3) (4) 

1973-1994 

(5) 

1995-2007 

Panel A: Production frontier. Dependent variable: ln(VA) 

Ln(Labour) 0.461*** 

(0.011) 

0.475*** 

(0.011) 

0.472*** 

(0.011) 

0.581*** 

(0.016) 

0.608*** 

(0.016)    

Ln(non-ICT) 0.275*** 

(0.008) 

0.240*** 

(0.008) 

0.218*** 

(0.008) 

0.256*** 

(0.012) 

0.211*** 

(0.012)    

Ln(ICT) 0.092*** 

(0.005) 

0.054*** 

(0.005) 

0.080*** 

(0.006) 

-0.065*** 

(0.009) 

0.070*** 

(0.008)    

Ln(R&D) 0.201*** 

(0.002) 

0.195*** 

(0.002) 

0.153*** 

(0.002) 

0.173*** 

(0.003) 

0.141*** 

(0.003)    

Time trend (t) -0.019 

(0.016) 

-0.020 

(0.015) 

-0.026* 

(0.014) 

-0.085* 

(0.047) 

0.020   

(0.126)    

t × ICT (in mill. $)   0.052*** 

(0.008) 

-0.002 

(0.007) 

2.302*** 

(0.275) 

-0.052*** 

(0.009)    

t  × R&D (in mill. $)   0.126*** 

(0.004) 

0.124*** 

(0.003) 

0.133*** 

(0.010) 

0.096*** 

(0.003)    

Constant  1.260** 

(0.610) 

1.248** 

(0.600) 

1.326** 

(0.558) 

3.644** 

(1.734) 

-0.121  

(3.766)  

Panel B: Inefficiency equation. Dependent variable: ln(u,ijt
2)  

(logged standard deviation of the inefficiency distribution)    

Ln(ICT)     -0.201*** 

(0.010) 

-0.031** 

(0.012) 

-0.577*** 

(0.030)    

Ln(R&D)     -0.230*** 

(0.009) 

-0.256*** 

(0.011) 

-0.447*** 

(0.024)    

Constant  -2.003*** 

(0.056) 

-1.915*** 

(0.049) 

0.657*** 

(0.046) 

0.063 

(0.056) 

3.038*** 

(0.157)    

Panel C: Dependent variable: ln(v
2)  

(logged standard deviation of normally distributed error term) 

Constant -1.837*** 

(0.018) 

-1.908*** 

(0.018) 

-2.138*** 

(0.014) 

-2.208*** 

(0.024) 

-2.229*** 

(0.016)          

Observations 6332 6332 6332 3412 2920 

Log-likelihood -23788.8 -23171.2 -21952.0 -12339.9 -7057.3    
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Notes: standard errors in parentheses. Squares and cross-products of the inputs are not reported. Production function 

coefficients are expressed as output elasticities. All specifications include industry and country fixed effects and CCE 

terms. Full tables are available from the authors upon request. 

 

Our analysis starts with the estimation of a baseline frontier model with no efficiency 

determinants (col. 1). We then extend this specification by including the effect of investment-specific 

technical change (col. 2) and the impact of R&D and ICT on technical inefficiency (col. 3). In 

columns (4) and (5) we estimate the full model for the period before and after 1995. This year marks 

the watershed for the advent of the information revolution and the establishment of knowledge-based 

economies (as discussed in Section 2). Thus, we check whether the contributions to productivity 

performance of the different channels have changed over time.  

 The estimates of prime coefficients of factor inputs in col. (1) are plausible, being consistent 

with factor income shares reported in Kneller and Stevens (2006) and Badinger and Egger (2016). 

The coefficient size of the ICT capital (0.092) falls within the range of values found in prior works.10 

Similarly, the magnitude of the coefficient on the within-industry R&D spillovers (0.201) is 

comparable with Frantzen (2002) and Bloom et al. (2013), among others. 

The specification in column (2) shows that the interactions between the time trend and 

ICT/R&D capital are statistically significant, pointing to a positive effect of these investments on the 

direction of technical change. The linear trend, taken alone, is not significant, implying that there is 

no effect associated with exogenous technological change. These results are in accordance with the 

literature on investment-specific technical change discussed above. 

 The specification in col. (3) – our benchmark specification - further extends the model to 

account for the impact of R&D and ICT on technical inefficiency (Panel B of Table 2). The negative 

coefficient found for both factors indicates that these forms of technological capital reduce 

inefficiency (namely, the productivity dispersion below the frontier). Following the discussion in 

Section 1, ICT is likely to decrease inefficiency by improving organisational settings and inter-firm 

                                                             
10 Reviewing a large number of empirical studies, Kretschmer (2012) concludes that a 1% increase in ICT increases 

productivity growth by approximately 0.05%. 
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coordination, while R&D by favouring the adaptation and exploitation of frontier technologies. In a 

nutshell, this result suggests that investments in technologically advanced assets lead to a better 

management of production inputs. Furthermore, when including the efficiency channel, the role of 

R&D and ICT on productivity changes. As we move from col. (2) to col. (3) the ICT elasticity 

increases (from 0.054% to 0.08%), while the R&D elasticity decreases (from 0.195% to 0.153%). 

These findings indicate that failing to account for the efficiency impact of technologically advanced 

assets, as in earlier studies, may yield biased estimates for their productivity effects via input 

accumulation and spillover channels. 

 In columns (4) and (5) we estimate our model for two time periods to assess differences in the 

impact of R&D and ICT over time. Consistent with the existing work (Stiroh, 2002a), we find that 

ICT accumulation is negatively associated with productivity levels in the first part of our sample 

period, with an elasticity of -0.065, while the effect of this variable becomes positive from 1995 

onwards. Between 1995 and 2007, a 1% increase in ICT increases output by 0.07%. An opposite 

pattern of results emerges for the ICT-specific technical change, which has a positive productivity 

effect before 1995 and negative afterwards. This suggests that, in the early stages of diffusion of the 

new technology, firms could easily gain from outward movements of the production frontier induced 

by these investments. Once the new technology diffuses, and without further significant movements 

of the frontier, input accumulation becomes one of the main channels of the productivity growth 

effect of ICT. On the contrary, the impact of R&D is more robust across the two time periods. 

Coefficient estimates are slightly lower in the 1995-2007 period compared to earlier years, but they 

are always positive and statistically significant.  

Finally, a crucial insight is that the efficiency impact of ICT and R&D is always significant, 

positive and increasing over time (especially for ICT). This implies that efficiency gains associated 
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with investments in technologically advanced assets have a broad scope and are not restricted to a 

particular stage of technology adoption/diffusion or industry life-cycle (Bos et al., 2013).11  

 

 

 

5.2 Industry heterogeneity 

Next, we investigate whether the impact of R&D and ICT varies across industry groups. Since returns 

of these factors are likely to differ with the technical requirements of production, technological 

opportunities and appropriability conditions, we distinguish our sample between high-tech and low-

tech industries.  

 Table 3 reports our results. These show that both low-tech and high-tech industries benefit 

from increasing investments in R&D, albeit the impact is marginally lower in low-tech.  Conversely, 

the effect of ICT capital is positive and significant in high-tech sectors and insignificant in low-tech 

industries. The latter finding corroborates the idea that the productivity effects of ICT are largely 

concentrated in those sectors producing goods and services in the field of information technology, 

whilst they are less diffused elsewhere (Gordon, 2000). We also find evidence of a positive effect of 

investment-specific technical change, in relation to both innovative assets, but only in high-tech 

sectors. This indicates that investment-specific technical change contributes to upgrading 

productivity levels only in industries that most intensively invest in technologically advanced assets 

or, put it differently, that these technological investments need to overcome a critical threshold to 

generate significant outward movements of the frontier. 

Results for the inefficiency equation reveal that ICT investments always improve efficiency 

in production, although the effect is much stronger in the high-tech sector. Conversely, R&D capital 

is negatively related to efficiency levels in high-tech production while it increases efficiency in low-

                                                             
11 Papaioannou and Dimelis (2017) find similar results for the impact of ICT on efficiency and relate their increasing 

effect to the relaxation of product markets regulation in the mid-1990s. 
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tech industries. This pattern of results, which is consistent with Parelman (1995), would suggest that 

more innovative industries are less focused on the reduction of technical inefficiency as they enjoy a 

competitive edge from R&D-induced frontier movements. R&D activities lead to the introduction of 

new products and processes which, within an industry, shifts the production frontier outward, 

amplifying the levels of inefficiency below the frontier and making it more difficult for laggards to 

use the latest technologies, or to cope with the efficiency standards of frontier firms (Castellacci and 

Zheng, 2010). This is consistent with the firm-level analysis developed by Andrews et al. (2015), 

who show that the increasingly fiercer competition between global frontier firms, mostly active in 

high-tech sectors, has widened productivity dispersion below the frontier.  

 

Table 3. Heterogeneous production frontiers  
(1) (2) 

 
High-tech and medium high-tech manufacturing  

+ 

 Knowledge-intensive services 

Low-tech and medium low-tech manufacturing 

+  

Less knowledge-intensive services 

Panel A: Production frontier. Dependent variable: Ln(VA) 

Ln(Labour) 0.413*** 

(0.014) 

0.725*** 

(0.016) 

Ln(non-ICT) 0.184*** 

(0.01) 

0.148*** 

(0.012) 

Ln(ICT) 0.057*** 

(0.007) 

0.006 

(0.009) 

Ln(R&D) 0.165*** 

(0.003) 

0.147*** 

(0.003) 

Time trend (t) -0.008 

(0.019) 

-0.019 

(0.018) 

t × ICT (in mill. $)  0.064*** 

(0.008) 

-0.028 

(0.018) 

t × R&D (in mill. $)  0.113*** 

(0.003) 

-0.047*** 

(0.015) 

Constant 1.756** 

(0.020) 

0.880*** 

(0.049) 

Panel B: Inefficiency equation. Dependent variable: ln(u,ijt
2)  

(logged standard deviation of the inefficiency distribution)   

Ln(ICT) -0.419*** 

(0.020) 

-0.025** 

(0.012) 

Ln(R&D) 0.128*** 

(0.017) 

-0.383*** 

(0.012) 

Constant  -0.778*** 

(0.116) 

0.880*** 

(0.049) 

Panel C: Dependent variable: ln(v
2 )   

(logged standard deviation of normally distributed error term) 

Constant  -2.414*** 

(0.027) 

-2.508*** 

(0.025) 
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Observations 2481 3851 

Log-likelihood -6106.1 -12672.7 

Notes: Standard errors in parentheses. Squares and cross-products of the inputs are not reported. Production function 

coefficients are expressed as output elasticities. All specifications include industry and country fixed effects and CCE 

terms. Full tables are available from the authors upon request. 

 

In low-tech industries, on the other hand, our results show that R&D activities are associated 

with higher levels of production efficiency as innovations are incremental, more derivative, targeted 

to softer innovations (organizational, managerial, etc.) and may favour implementation and 

adaptation of frontier technologies (see Bos et al., 2013 for similar evidence).  

Summing up, in high-tech industries R&D efforts are directed towards the creation of 

breakthrough innovations that increase productivity levels and move the frontier outward, but at the 

same time raise the inefficiency below the frontier; in low-tech industries R&D is directed towards 

improving efficiency or implementing frontier technologies (von Tunzelmann and Acha, 2005).  

 

5.3 Inter-industry spillovers  

One may question that we are incorrectly estimating the productivity effects of R&D or ICT because 

these variables capture knowledge transfers or productivity spillovers across industries and countries. 

Failing to account for these sources of technological knowledge, which are external to the industry, 

may result into upward biased estimates for both ICT and R&D coefficients. To account for this 

potential mis-specification problem, we include into the model a measure of inter-industry R&D and 

ICT spillovers (denoted as PR&D and PICT respectively) as additional determinants of TFP. We 

therefore re-write equation (4) as follows:  

𝑡𝑓𝑝𝑖𝑗𝑡 = 𝜃1 ∙ ln 𝑅&𝐷𝑖𝑗𝑡 + 𝜃2 ∙ ln 𝑃𝑅&𝐷𝑖𝑗𝑡 + 𝜃3 ∙ ln 𝑃𝐼𝐶𝑇𝑖𝑗𝑡 + (𝜌0 ∙ 𝑡 + 𝜌1 ∙ 𝑡 ∙ 𝐼𝐶𝑇𝑖𝑗𝑡 + 𝜌2 ∙ 𝑡 ∙ 𝑅&𝐷𝑖𝑗𝑡) − 𝑢𝑖𝑗𝑡   (4.b) 

  

As proxies for the spillover pool, we use measures of knowledge generated by investment in ICT and 

R&D in neighbouring industries (at home or abroad). Hence, we construct, for each industry-country 

pair, a weighted measure of R&D/ICT, where the weights are the share of intermediate input 
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purchases over total intermediate input expenditure of the purchasing industry. For R&D, our 

spillover pool variable is defined as:  

𝑃𝑅&𝐷𝑖𝑗𝑡 = ∑ ∑ 𝑤𝑖𝑗𝑅&𝐷𝑖𝑗𝑡𝑗𝑖⁡             𝑤𝑖𝑗 = 𝐼𝑖𝑗/(∑ ∑ 𝐼𝑖𝑗𝑗 )𝑖⁡                 (6) 

where 𝑖  denotes industries and 𝑗  denotes countries. 𝐼𝑖𝑗  identifies inter-industry purchases of 

intermediate inputs made at home or abroad, derived from the World Input-Output Tables (WIOD) 

dataset (release 2013).12 We use the share of intermediates at the benchmark year of 1995 to mitigate 

problems of reverse causality, which may arise when industries increase their purchases of 

intermediates from those sectors sourcing larger spillovers. Similarly, for ICT capital, we have: 

 𝑃𝐼𝐶𝑇𝑖𝑗𝑡 = ∑ ∑ 𝑤𝑖𝑗𝐼𝐶𝑇𝑖𝑗𝑡𝑗𝑖⁡             𝑤𝑖𝑗 = 𝐼𝑖𝑗/(∑ ∑ 𝐼𝑖𝑗𝑗 )𝑖⁡ .                          (7)  

 As discussed above, our model specification controls for cross-sectional dependence by 

including CCE terms (Eberhardt et al., 2013). Hence, any effect deriving from the spillover pool 

variables is additional to the more general effects captured by the cross-sectional averages.  

 

Table 4. Inter-industry technology spillovers (within and across countries)  
(1) (2) (3) (4) (5) 

1973-
1994 

(6) 

1995- 
2007 

Panel A: Production frontier. Dependent variable: ln(VA) 

Ln(Labour) 0.472*** 

(0.011) 

0.472*** 

(0.011) 

0.454*** 

(0.011) 

0.455*** 

(0.011) 

0.584*** 

(0.016) 

0.592*** 

(0.016)    

Ln(Non-ICT) 0.218*** 

(0.008) 

0.225*** 

(0.008) 

0.240*** 

(0.008) 

0.242*** 

(0.008) 

0.254*** 

(0.012) 

0.216*** 

(0.012)    

Ln(ICT)  0.080*** 

(0.006) 

0.076*** 

(0.006) 

0.061*** 

(0.006) 

0.060*** 

(0.006) 

-0.072*** 

(0.010) 

0.077*** 

(0.008)    

Ln(R&D) 0.153*** 

(0.002) 

0.151*** 

(0.002) 

0.156*** 

(0.002) 

0.155*** 

(0.002) 

0.178*** 

(0.003) 

0.141*** 

0.003)    

Ln(PR&D)  0.056*** 

(0.006) 

 0.0240*** 

(0.006) 

0.048*** 

(0.008) 

0.011  

(0.009)     

Ln(PICT)   0.177*** 

(0.008) 

0.169*** 

(0.008) 

0.144*** 

(0.013) 

0.089*** 

(0.014)    

Time trend (t) -0.026* 

(0.014) 

-0.015 

(0.019) 

-0.032** 

(0.014) 

-0.025 

(0.019) 

-0.059 

(0.063) 

0.000    

(0.000)    

t ×  ICT (in mill. $) -0.002 

(0.007) 

0.003 

(0.007) 

-0.011 

(0.007) 

-0.0081 

(0.007) 
2.525*** 
(0.277) 

-0.052*** 

(0.009) 

t × R&D (in mill. $) 0.124*** 

(0.003) 

0.131*** 

(0.003) 

0.120*** 

(0.003) 

0.123*** 

(0.003) 

0.141*** 

(0.010) 

0.097*** 

(0.004)    

Constant  1.326** 

(0.558) 

0.871 

(0.697) 

0.963 

(0.600) 

0.747 

(0.702) 

2,035 

(2.651) 

0.449  

(4.645)   

                                                             
12 We set within-industry intermediate transactions to zero so that the matrix of weights has null cells along the principal 

diagonal.  
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Panel B: Inefficiency equation. Dependent variable: ln(u,ijt
2)  

(logged standard deviation of the inefficiency distribution)   

Ln(ICT) -0.201*** 

(0.010) 
-0.205*** 

(0.010) 
-0.197*** 

(0.010) 
-0.199*** 

(0.010) 
-0.037*** 

(0.013) 
-0.565*** 

(0.030)    

Ln(R&D) -0.230*** 

(0.009) 

-0.227*** 

(0.009) 

-0.240*** 

(0.009) 

-0.238*** 

(0.009) 

-0.249*** 

(0.010) 

-0.451*** 

(0.025)    
Constant 0.657*** 

(0.046) 

0.696*** 
(0.045) 

0.671*** 
(0.045) 

0.684*** 
(0.045) 

0.120** 
(0.057) 

2.982*** 
(0.158) 

Panel C: Dependent variable: ln(v
2  )  

(logged standard deviation of normally distributed error term) 
Constant -2.138*** -2.160*** -2.150*** -2.158*** -2.271*** -2.230***  

(0.014) (0.015) (0.014) (0.014) (0.025) (0.016) 

Observations 6332 6332 6332 6332 3412 2920 

Log-likelihood -21952.0 -21903.2 -21684.7 -21676.0 -1.2e+04 -7.0e+03    

Notes: Standard errors in parentheses. Squares and cross-products of the inputs are not reported. Production function 

coefficients are expressed as output elasticities. All specifications include industry and country fixed effects and CCE 

terms. Full tables are available from the authors upon request. 

 

 Table 4 reports our results for the extended specification. The first column reproduces the 

coefficient estimates for the benchmark specification (Table 2, col. 3) for comparison purposes, while 

columns (2) – (6) include our proxies for inter-industry spillovers. We consider these variables 

separately in columns (2) and (3), whilst in column (4) we include them in the same specification. 

These measures of inter-industry spillovers are positively and significantly related to industry value 

added. Estimates suggest that a 1% increase in the value of our spillover pools increases productivity 

by 0.06% in the case of R&D, and 0.177% for ICT. The estimated impact is lower when we include 

both proxies in the same specification (0.024% for R&D and 0.169% for ICT), which is probably due 

to the correlation induced by the same structure of weights used in their construction. Nonetheless, 

both spillover variables remain highly significant.13 Our findings therefore diverge from Acharya 

(2016) who stresses that, at the industry-by-country level, it is difficult to discern inter-industry ICT 

spillovers from those induced by the R&D investments of commercial partner industries (which 

usually prevail). Focusing on column (4), our results show that the inter-industry spillover effect of 

R&D is noticeably smaller than the excess returns associated with the (within-) industry R&D 

engagement (0.024 vs. 0.155, col. 3). We observe a similar pattern in columns (5) and (6), where we 

split the sample into pre- and post-1995. In the later period inter-industry R&D spillovers are no 

longer statistically significant. This may be due to the increasing difficulty of R&D to turn into 

                                                             
13 Similar findings emerge even when we use weights scaled on the total sales of the selling industry, or use weights for 

a benchmark country (the US). We omit these results for sake of brevity. 
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innovation output and the reduced potential for technology transfers (Segerstrom, 1998; Venturini, 

2012; Bloom et al., 2017). Conversely, the inter-industry spillover effect of ICT plays an important 

role in the overall period (col. 4), although the effect is lower after 1995.14  

 Our results on inter-industry spillover effects from ICT and R&D are consistent both in size 

and significance with Marsh et al. (2017). Using US firm-level data for the 1990s, these authors show 

that productivity spillovers of the inter-industry ICT pool are positive and robust across 

specifications, whilst R&D spillovers channelled by inter-industry intermediate input transactions are 

not statistically significant. 

 

5.4 Complementarities between ICT and R&D 

Current discussions on the relationship between ICT, R&D and productivity suggest the presence of 

complementarities between the two innovative assets (Polder et al., 2017; Corrado et al., 2017). In 

this section we contribute to these new developments by investigating whether ICT and R&D act as 

complements in reducing inefficiencies in production. To address this question, we include into our 

specification an interaction term in the efficiency component of the model. Table 5 presents the results 

relative to the inefficiency equation (Panel B), including estimates of the benchmark model in the 

first column (see Appendix Table A.3 for the full table). Column (2) refers to the specification without 

inter-industry spillovers, while these are included in column (3). These results show that the 

interaction between ICT and R&D is negative and statistically significant, indicating the presence of 

complementarities between the two assets in reducing technical inefficiency. The estimated 

individual effects of ICT and R&D are lower (cols. 2 and 3 vs. column 1) which suggests that omitting 

the interaction term inflates the direct effect of ICT and R&D.  

These findings suggest that ICT may complement R&D in the re-organization of production 

during the innovation process, consistent with Polder et al. (2017). ICT may also facilitate the 

                                                             
14 See Section A.1 of the Appendix (Table A.4) for an extended assessment of the sensitivity of the results to the modelling 

of cross-sectional dependence. 
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diffusion of best practices, leading to better resource management and coordination (Corrado et al., 

2017). Our results also support the evidence discussed in Chen et al. (2016), where industries with a 

higher ICT usage intensity enjoy larger returns to R&D and organizational investments. However, 

the identification of the exact mechanisms through which the complementarity between technological 

investments operates requires more information about the nature (basic, applied, or development) and 

the composition (personnel, equipment, structures, etc.) of R&D, as well as about the type 

(computers, software, EPR, platforms, etc.) and the field of application (commercial, administrative, 

etc.) of ICT. This is an important area for further research. 

 

 

Table 5. Complementarity effects on technical efficiency (full specification) 
Panel B: Inefficiency equation. Dependent variable: ln(u,ijt

2) 

(logged standard deviation of the inefficiency distribution)     

 (1) (2) (3) 

Ln(ICT) -0.201*** 

(0.010) 

-0.140*** 

(0.011)    

-0.147*** 

(0.011) 

Ln(R&D) -0.230*** 

(0.009) 

-0.144*** 

(0.011)    

-0.157*** 

(0.011) 

Ln(ICT) ×  Ln(R&D) 
 

-0.021*** 

(0.002)    

-0.019*** 

(0.002) 

Constant 0.657*** 

(0.046) 

0.469*** 

(0.046) 

0.517*** 

(0.045) 

    

Spillovers variables in the frontier No No Yes 

Observations 6332 6332 6332 

Notes: Standard errors in parentheses. All specifications include industry and country fixed effects and CCE terms. 

Translog production function coefficients and the standard deviation of the normally distributed error term omitted to 

save space. The complete set of coefficients is shown in Appendix Table A.3. 

 

 

6   Assessing the relevance of ICT and R&D  

6.1 Contribution of ICT and R&D to output and TFP growth 

We have so far identified different ways in which ICT and R&D affect output production, i.e. via 

input accumulation, spillover channel, technical change and technical efficiency. We now turn to 

evaluating the overall contribution of the different channels to output and TFP growth over our 
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sample period. More specifically, we now quantify the proportion of the output growth that, according 

to our model, is due to changes in input accumulation and TFP growth, and more importantly how 

much TFP growth is due to R&D and ICT, via the different channels (eq. 4.b). The derivation of the 

respective components is shown in Sections A.2 and A.3 of the Appendix.  

 Table 6 reports our results. Our model predicts a positive output growth throughout the period, 

driven to a large extent by TFP growth and, secondarily, by capital accumulation (ICT and non-ICT 

capital). The contribution of labour accumulation is negative (-0.27%).  

 

 

 

Table 6. Sources of output and TFP growth (1973-2007) 

 Output growth (predicted) 7.34% 

Components of output growth Input accumulation (total) 1.15% 

     Labor accumulation -0.27% 

     Non-ICT capital accumulation 0.61% 

     ICT capital accumulation 0.81% 

TFP growth 6.23% 

Contributions to TFP growth Total R&D capital contribution 56.6% 

      Within-industry R&D spillovers 22.4% 

      R&D investment-specific TC 30.9% 

      Inter-industry R&D spillover 2.4% 

      R&D contribution to TFP growth via efficiency 0.9% 

 Total ICT capital contribution 36.8% 

      ICT investment-specific TC -0.7% 

      Inter-industry ICT spillovers 36.8% 

      ICT contribution to TFP growth via efficiency 0.7% 

 

 The decomposition shows that R&D and ICT have accounted for almost 95% of TFP growth. 

R&D has played a key role, particularly via within-industry spillovers (extra-returns) and investment-

specific technical change. The ICT capital contribution is lower than the R&D contribution (36.8% 

versus 56.6%), but it is still sizeable. The main contribution comes from inter-industry spillovers, a 

result which is consistent with the larger share of knowledge made possible by the diffusion of ICT 

applications (Marsh et al., 2017). On the other hand, spillovers from R&D predominantly transmit 
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within rather than across industries, probably because of the more specific knowledge content and 

greater similarities in the technology base between firms operating in the same sector.  

Finally, Table 6 shows that R&D and ICT contribute to TFP growth via the efficiency channel 

by a 0.9% and 0.7%, respectively, a smaller effect compared to the other channels.  Consistently to 

what found in earlier papers (Henry et al., 2009; Bos et al., 2010), efficiency change overall explains 

approximately 1% of TFP growth (see the full decomposition in Table A.5).  This is hardly surprising 

given that we are looking at a group of industrialised countries which are expected to be close to the 

technological frontier. As shown in Table 3, deviation from the frontier are more likely to be related 

to the turbulence of research activity rather than an inefficient use of factor inputs.   

 

6.2 Policy implications 

Our results have important implications for policy measures aimed at increasing productivity growth. 

Throughout our study we have analysed the impact of R&D next to ICT, emphasising the notion that 

modern production systems need to focus on the contribution of both research and digital 

technologies. This is at the centre of the Fourth Industrial Revolution and the Internet of Things 

(WEF, 2017), based on hyper-connectivity, the use of machine learning algorithms, big data and 

robotization. This new framework involves a greater integration of investments in R&D and 

information technology in driving smart production (EPO, 2017; Schwab, 2016). To date there is 

only some initial evidence that highly automated production modes and intelligent technologies have 

positive effects on productivity (Graetz and Michaels, 2017; Venturini, 2018) and our analysis 

provides an early contribution to this new strand of the literature.  

Our results suggest that policy initiatives aimed at raising the joint engagement in R&D and advanced 

information systems will yield large effects in the medium and long run, will exploit different 

transmission channels and produce heterogeneous impacts across industries. Examples of these 

policies in OECD countries include Alliance Industrie du Future (France), Plattform Industrie 4.0 

(Germany) and Piano Industria 4.0 (Italy). These have introduced cumulative incentives to 
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technological investments such as R&D tax credits, patent box and enhanced deductions to 

investments in tangible and intangible assets, i.e., special tax treatments to expenditure in scientific 

software and electronic equipment employed in the realisation of R&D projects. 

Finally, our analysis also highlights the importance of inter-industry ICT spillovers in promoting 

productivity growth. With the advent of the Fourth Industrial Revolution, these effects may be larger 

than those estimated in the current study, suggesting that public incentives towards the adoption of 

intelligent technologies might spur productivity indirectly via inter-industry ICT spillovers. 

 

7. Conclusions 

This paper has provided a comprehensive assessment of the productivity growth effects of R&D and 

ICT, using long-term data for a large cross-country, cross-industry sample. Looking at the full 

spectrum of channels through which these investments can translate into better productivity 

performance - namely input accumulation, investment-specific technical change, efficiency and 

spillover - we have identified what proportion of industrial productivity growth can be ascribed to 

ICT and R&D.  

We have shown that R&D operates through all main routes: i) a direct impact on TFP; ii) by 

promoting investment-specific technical change; iii) by increasing production efficiency; and iv) by 

generating spillovers. On the other hand, the productivity effect of ICT works through a lower number 

of channels whose relevance has changed over time, i.e. investment-specific technical change and 

efficiency route before 1995, input accumulation after 1995, whilst inter-industry spillover effects 

have been significant throughout the 1973-2007 period. We have also found some evidence of 

complementarity between R&D and ICT in reducing inefficiencies in production. When accounting 

for industry heterogeneity, we have shown that ICT has wide positive effects on efficiency across 

sectors. By contrast, R&D increases efficiency in low-tech industries but not in high-tech industries, 

in which it probably raises efficiency dispersion because of the introduction of radical, breakthrough 

innovations, and the simultaneous process of creative destruction.  
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 Our results provide valuable insights into the role of technological investments on TFP 

growth. First, both ICT and R&D are found to explain almost all of the productivity growth in 

developed countries since the early 1970s. The magnitude of the effect appears much larger than 

found in works using similar data (Mc Morrow et al., 2010). Second, contrary to previous estimates 

(Stiroh, 2002b; Inklaar et al., 2008), investments in ICT capital produce sizable spillover effects on 

TFP and hence their contribution to explaining the EU-US productivity divide may be larger than 

estimated in earlier works (Timmer and Van Ark, 2005). This also calls for further analysis into how 

industry structure within countries, and differences in ICT intensity across companies, contribute to 

productivity growth. These questions have been investigated in relation to R&D (Moncada-Paternò-

Castello et al., 2010), while the evidence for ICT is rather limited (Chun et al., 2015).  

Overall, our work has contributed to a better understanding of the complex mechanisms 

(channels) through which technological investments affect productivity growth. We have employed 

a methodological framework that can be used to analyse the drivers of productivity growth in different 

countries and time periods and that may help understand the productivity slowdown in advanced 

economies, following the Great Recession of 2008-2009. We leave these developments open to future 

research.   
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Appendix  

 

Table A.1. Summary statistics 

Note: monetary variables are expressed in millions of USD PPP 1997; hours worked are expressed 

in thousands of hours.  

 

 
Table A.2 Specification tests 

 Notes: these tests refer to the specification in Col. 3, Table 2. The only exception is raw 3 which refers to 

Col. 2, Table 2.  

 Observations Mean Standard deviation Min.  Max.  

1973-1994      

Value added 3,412 19,827.3 28,012.4 22.5 201,376.0 

Total hours worked 3,412 987.0 1,278.7 4.6 7,856.0 

Non-ICT capital stock 3,412 8,069.7 11,928.2 21.9 74,461.0 

ICT capital stock 3,412 309.3 742.9 0.0 8,249.9 

R&D stock 3,412 4,173.4 16,173.8 0.0 197,137.1 

1995-2007      

Value added 2,920 38,417.7 104,763.2 61.0 1,469,737.9 

Total hours worked 2,920 1,171.7 3,121.5 2.6 43,675.0 

Non-ICT capital stock 2,920 13,432.9 28,994.7 57.8 300,853.7 

ICT capital stock 2,920 3,465.8 13,652.1 0.8 220,458.8 

R&D stock 2,920 7,750.7 28,611.9 0.9 355,314.7 

1973-2007      

Value added 6,332 28,400.3 74,625.7 22.5 1,469,737.9 

Total hours worked 6,332 1,072.1 2,319.9 2.6 43,675.0 

Non-ICT capital stock 6,332 10,542.9 21,712.2 21.9 300,853.7 

ICT capital stock 6,332 1,765.0 9,418.4 0.0 220,458.8 

R&D stock 6,332 5,823.1 22,837.8 0.0 355,314.7 

Null hypothesis Conditions 
Chi2 

statistics 

Critical 

values 

(5%) 

Cobb-Douglas βnp=0, for n,p=L, K, ICT 1727.00 21.02 

Constant Returns 

to Scale 
Σβn=1, for n=L, K, ICT; Σβnp=0, for n,p=L, K, ICT;  896.76 9.48 

No inefficiency λ = 0 280.00 2.71 

No common 

correlated effects 

No significance of the coefficients of the cross-sectional 

averages of dependent and independent variables 
96.28 19.67 

No technical 

change 

components 

𝜌1=0 & 𝜌2=0 & 𝜌3=0 1650.00 7.81 
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Appendix Table A.3. Complementarity between ICT and R&D 

  
(1) (2)  (3) 

Panel A: Production frontier. Dependent variable: ln(VA) 

Ln(Labour) 0.472*** 

(0.011) 

0.477*** 

(0.011)    

0.459*** 

(0.010) 

Ln(non-ICT) 0.218*** 

(0.008) 

0.217*** 

(0.008)    

0.241*** 

(0.008) 

Ln(ICT) 0.080*** 

(0.006) 

0.067*** 

(0.006)    

0.048*** 

(0.006) 

Ln(R&D) 0.153*** 

(0.002) 

0.150*** 

(0.002)    

0.152*** 

(0.002) 

Ln(PR&D) 
  

0.028*** 

(0.006) 

Ln(PICT) 
  

0.162*** 

(0.008) 

Time trend (t) -0.026* 

(0.014) 

-0.026*   

(0.014)    

-0.025 

(0.019) 

t ×  ICT (in mill. $) -0.002 

(0.007) 

0.010    

(0.007)    

0.003 

(0.007) 

t ×  R&D (in mill. $) 0.124*** 

(0.003) 

0.126*** 

(0.003)    

0.126*** 

(0.003) 

Constant  1.326** 

(0.558) 

1.305**  

(0.555)    

0.737 

(0.699) 

Panel B: Inefficiency equation. Dependent variable: ln(u,ijt
2),  

(logged standard deviation of the inefficiency distribution)                  

Ln(ICT) -0.201*** 

(0.010) 

-0.140*** 

(0.011)    

-0.147*** 

(0.011) 

Ln(R&D) -0.230*** 

(0.009) 

-0.144*** 

(0.011)    

-0.157*** 

(0.011) 

Ln(ICT) x Ln(R&D) 
 

-0.021*** 

(0.002)    

-0.019*** 

(0.002) 

Constant  0.657*** 

(0.046) 

0.469*** 

(0.046)    

0.517*** 

(0.045) 

Panel C: Dependent variable: ln(v
2 ) 

(logged standard deviation of normally distributed error term)                

Constant  -2.138*** 

(0.014) 

-2.138*** 

(0.014)    

-2.159*** 

(0.014) 

Observations 6332 6332 6332 

Log-likelihood -2.2e+04 -2.2e+04    -2.2e+04 

Notes: standard errors in parentheses. Squares and cross-products of the inputs are not reported to save space. Production 

function coefficients are expressed as output elasticities. All specifications include industry and country fixed effects and 

CCE terms.  
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A.1 Robustness checks on cross-sectional dependence (CCE) terms 

As a further robustness check, we have assessed the sensitivity of our results to different assumptions 

regarding the control for cross-sectional dependence (Appendix Table A.4). In the manuscript, we 

have used pooled CCE terms within the frontier, i.e. we have imposed common coefficients on the 

cross-sectional averages of the dependent and independent variables. Here, we assess the robustness 

of our results to the inclusion of CCE terms in the inefficiency equation (Table A.4, col. 2) and in 

both the frontier and the efficiency term (Table A.4, col. 3). In both cases, our findings are not 

significantly altered and the main difference is a moderately lower impact of ICT and R&D on 

efficiency (Table A.4, col. 3). We also take another step forward, allowing for heterogeneity in the 

parameters associated with CCE terms. We first assume that the coefficients on the cross-sectional 

terms vary by countries but are common across industries (Table A.4, col. 4). In the last column of 

Table A.4, the parameters of the CCE are allowed to vary across industries. These changes in the 

treatment of the cross-sectional terms control for the possibility that un-observed factors affect 

countries or industries asymmetrically. In our model, this robustness check could be particularly 

useful to remove the noise associated with the measurement of ICT and, to some extent, R&D. 

Overall, the magnitude of all estimated parameters is largely similar to the benchmark model (col. 3, 

Table 2), with the exception of ICT whose impact on efficiency is larger when using country-specific 

coefficients for the CCE terms.  
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Table A.4 Robustness checks: Alternative modelling for cross-sectional dependence   
Pooled CCE Heterogeneous CCE 

 
(1) (2) (3) (4) (5) 

Panel A: Production frontier. Dependent variable: ln(VA) 

Ln(Labour) 0.472*** 

(0.011) 

0.480*** 

(0.011) 

0.485*** 

(0.012) 

0.496***  

(0.011) 

0.616*** 

(0.011) 

Ln(non-ICT) 0.218*** 

(0.008) 

0.211*** 

(0.008) 

0.217*** 

(0.008) 

0.243*** 

(0.008) 

0.163*** 

(0.008) 

Ln(ICT) 0.080*** 

(0.006) 

0.080*** 

(0.006) 

0.0790*** 

(0.006) 

0.044*** 

(0.006) 

0.0632*** 

(0.006) 

Ln(R&D) 0.153*** 

(0.002) 

0.156*** 

(0.002) 

0.159*** 

(0.003) 

0.173*** 

(0.002) 

0.153*** 

(0.002) 

Time trend (t) -26.21* 

(14.34) 

-1.533** 

(0.670) 

-32.17** 

(14.25) 

-0.022 

(0.015) 

-26.76** 

(13.62) 

t ×  ICT (in mill. $) -0.002 

(0.007) 

0.002 

(0.007) 

-0.006 

(0.007) 

-0.021*** 

(0.008) 

-0.020*** 

(0.007) 

t ×  R&D (in mill. $) 0.124*** 

(0.003) 

0.122*** 

(0.003) 

0.121*** 

(0.003) 

0.114*** 

(0.003) 

0.093*** 

(0.003) 

Constant 1.326** 

(0.558) 

0.790*** 

(0.029) 

0.813 

(0.665) 

0.917 

(1.279) 

1.056    

(1.680)    

Panel B: Inefficiency equation. Dependent variable: ln(u,ijt
2)  

(logged standard deviation of the inefficiency distribution )  
Ln(ICT) -0.201*** 

(0.010) 

-0.187*** 

(0.010) 

-0.175*** 

(0.010) 

-0.184*** 

(0.010) 

-0.205*** 

(0.009) 

Ln(R&D) -0.230*** 

(0.009) 

-0.211*** 

(0.009) 

-0.203*** 

(0.009) 

-0.258*** 

(0.010) 

-0.255*** 

(0.009) 

Constant 0.657*** 

(0.046) 

-0.368 

(1.916) 

-4.705* 

(2.813) 

0.548*** 

(0.048) 

0.856*** 

(0.045) 

Panel C: Dependent variable: ln(v
2)  

(logged standard deviation of normally distributed error term) 
Constant -2.138*** 

(0.014) 

-2.154*** 

(0.014) 

-2.166*** 

(0.015) 

-2.137*** 

(0.014)) 

-2.358*** 

(0.016) 

      

Industry dummies Yes Yes Yes Yes Yes 

Country dummies Yes Yes Yes Yes Yes 

Common Correlated Effects Frontier Efficiency Frontier+ 

Efficiency 

Frontier Frontier 

Common Correlated Effects (parameters) Common Common Common Country- 
specific 

Industry- 
specific 

      

Observations 6332 6332 6332 6332 6332    

Log-likelihood -21952.0 -21939.4 -21863.3 -20958.5 -19651.0    

Notes: standard errors in parentheses. Squares and cross-products of the inputs are not reported to save space. Production 

function coefficients are expressed as output elasticities. All specifications include industry and country fixed effects and 

CCE terms.  
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A.2 Derivation of the contribution of the different channels to output and productivity growth 

The computation of the contribution of the different channels to output and TFP growth has been 

carried out as follows: 

i) input accumulation (IA), IA=∑ (𝛾𝑛,𝑖𝑗𝑡 ∙ �̇�𝑛)𝑛 , where �̇� is the annual rate of input growth15; 

ii) technical change (𝑇𝐶): 𝑇𝐶𝑖𝑗𝑡 =
𝜕𝑦𝑖𝑗𝑡

𝜕𝑡
= 𝜌0 + 𝜌1 ∙ 𝐼𝐶𝑇𝑖𝑗𝑡 + 𝜌2 ∙ 𝑅&𝐷𝑖𝑗𝑡; 

iii) within-industry R&D spillover 𝜃 ∙ 𝑅&𝐷̇ 𝑖𝑗𝑡; 

iv) efficiency change (𝐸𝐶),  𝐸𝐶 = −
∂u𝑖𝑗𝑡⁡

∂t
≅ −(𝑢𝑖𝑗𝑡 − 𝑢𝑖𝑗𝑡−1)  

v) scale changes (𝑆𝐶),  𝑆𝐶 = (𝑅𝑇𝑆𝑛,𝑖𝑗𝑡 − 1) ∙ ∑ [(
𝛾𝑛,𝑖𝑗𝑡

𝑅𝑇𝑆𝑛,𝑖𝑗𝑡
) ∙ �̇�𝑛]𝑛 ⁡  

Thus, for our benchmark model we can re-write the output growth equation as follows:  

�̇�𝑖𝑗𝑡 = ∑ (𝛾𝑛,𝑖𝑗𝑡 ∙ �̇�𝑛)𝑛⏟        
𝐼𝑛𝑝𝑢𝑡⁡𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+⁡𝜃 ∙ 𝑅&𝐷̇ 𝑖𝑗𝑡 + 𝑇𝐶 + 𝐸𝐶 + 𝑆𝐶⏟                  
𝑇𝐹𝑃̇

                (8) 

When including inter-industry spillover effect we add two additional terms to eq. (8): 

�̇�𝑖𝑗𝑡 = ∑ (𝛾𝑛,𝑖𝑗𝑡 ∙ �̇�𝑛)𝑛⏟        
𝐼𝑛𝑝𝑢𝑡⁡𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+⁡𝜃 ∙ 𝑅&𝐷̇ 𝑖𝑗𝑡 + 𝑇𝐶 + 𝐸𝐶 + 𝑆𝐶⏟                  
𝑇𝐹𝑃̇

+ (𝜃2 ∙ 𝑃𝑅&𝐷𝑖𝑗𝑡)̇⏟        
𝑖𝑛𝑡𝑒𝑟−𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦⁡𝑅&𝐷⁡𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟

+

(𝜃3 ∙ 𝑃𝐼𝐶𝑇𝑖𝑗𝑡)̇⏟        
𝑖𝑛𝑡𝑒𝑟−𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦⁡𝐼𝐶𝑇⁡𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟

           (9) 

  

                                                             
15 Output elasticity of each input n is 𝛾𝑛,𝑖𝑗𝑡 =

𝜕𝑦𝑖𝑗𝑡

𝜕𝑥𝑛𝑖𝑗𝑡
= 𝛽𝑛 + (𝛽𝑛𝑛 ∙ 𝑥𝑛,𝑖𝑗𝑡) + ∑ 𝛽𝑛𝑝 ∙ 𝑥𝑝,𝑖𝑗𝑡𝑝≠𝑛  and returns to scale (𝑅𝑇𝑆𝑛,𝑖𝑗𝑡) 

are ∑ ⁡𝛾𝑛,𝑖𝑗𝑡𝑛  . In a translog production function both output elasticities and returns to scale are specific to each observation 

(industry/country/year). In our case, also the technical change (investment-specific) component is specific to each 

observation.  
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A.3 Derivation of the marginal effects of technological investments on inefficiency  

For the given parameterization of the normal-half-normal SFM (Kumbhakar et al., 2017), the 

marginal effect of ICT on 𝐸[𝑢𝑖𝑗𝑡| ln 𝐼𝐶𝑇𝑖𝑗𝑡 , ln 𝑅&𝐷𝑖𝑗𝑡] is: 

𝜕𝐸[𝑢𝑖𝑗𝑡| ln 𝐼𝐶𝑇𝑖𝑗𝑡 , ln 𝑅&𝐷𝑖𝑗𝑡]

𝜕 ln 𝐼𝐶𝑇𝑖𝑗𝑡
= 𝛿1 ∙ √

2

𝜋
∙ 𝜎𝑢,𝑖𝑗𝑡. 

The marginal effect of R&D is: 

  

𝜕𝐸[𝑢𝑖𝑗𝑡| ln 𝐼𝐶𝑇𝑖𝑗𝑡 , ln 𝑅&𝐷𝑖𝑗𝑡]

𝜕 ln𝑅&𝐷𝑖𝑗𝑡
= 𝛿2 ∙ √

2

𝜋
∙ 𝜎𝑢,𝑖𝑗𝑡. 
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Table A.5. Sources of output and TFP growth: Full decomposition 

   % points 

Output growth (predicted) a (=b+c) 7.34% 

Input accumulation b (=b1+b2+b3) 1.15% 

     Labour accumulation      b1 -0.27% 

     Non-ICT capital accumulation      b2 0.61% 

     ICT capital accumulation      b3 0.81% 

TFP growth c (=c1+..+c7) 6.23% 

     Within-industry R&D spillovers      c1 1.40% 

     ICT investment-specific technical change (TC)      c2 -0.05% 

     R&D investment-specific technical change (TC)      c3 1.92% 

     Scale change      c4 -0.37% 

     Inter-industry R&D spillovers      c5 0.15% 

     Inter-industry ICT spillovers      c6 2.29% 

     Efficiency change      c7 0.88% 

          R&D contribution to TFP growth via efficiency         d1=marg. effect*c7 0.05% 

          ICT contribution to TFP growth via efficiency         d2=marg. effect*c7 0.04% 

    
TFP growth   100.0% 

Total R&D capital contribution   56.6% 

     Within-industry R&D spillovers c1/c 22.4% 

     R&D investment-specific TC c3/c 30.9% 

     Inter-industry R&D spillovers c5/c 2.4% 

          R&D contribution to TFP growth via efficiency d1/c 0.9% 

Total ICT capital contribution   36.8% 

     ICT investment-specific TC c2/c -0.7% 

     Inter-industry ICT spillovers c6/c 36.8% 

          ICT contribution to TFP growth via efficiency d2/c 0.7% 

 

 

 


