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Abstract

This paper provides a sound foundation for autonomous objects communicating by remote
method invocations and futures. As a distributed extension of ς-calculus we define ASPfun, a
calculus of functional objects, behaving autonomously and communicating by a request-reply
mechanism: requests are method calls handled asynchronously and futures represent awaited
results for requests. This results in an object language enabling a concise representation of
a set of active objects interacting by asynchronous method invocations. This paper first
presents the ASPfun calculus and its semantics. Then, we provide a type system for ASPfun

which guarantees the “progress” property. Most importantly, ASPfun has been formalised;
its properties have been formalised and proved using the Isabelle theorem prover and we
consider this as an important step in the formalization of distributed languages. This work
was also an opportunity to study different binder representations and experiment with two
of them in the Isabelle/HOL theorem prover.
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1. Introduction

This paper presents a functional active object language featuring asynchronous method
calls and futures; it has been formalised in the Isabelle/HOL theorem prover. ASPfun (asyn-
chronous sequential processes) is an extension of the ς-calculus (Abadi and Cardelli, 1996)
where objects are distributed into several activities, and activities are the units of distri-
bution. Communications toward activities are asynchronous (remote) method calls; and
futures are identifiers for the result of such asynchronous invocations. A future represents
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an evaluation-in-progress in a remote activity. Futures can be transmitted between activ-
ities as any object: several activities may refer to the same future. The calculus is said
to be functional because method update is realised on a copy of the object: there is no
side-effect. The paper also studies a type system for active objects. Typing is a well studied
technique (Pierce, 2002); we prove here a classical typing property, progress, in unusual
settings, distributed active objects.

We mechanically proved properties about ASPfun and, since the calculus is abstract, our
semantics and mechanisation can be a basis for the analysis of related languages. Distributed
active objects represent an abstract notion of concurrently computing and communicating
activities. Clearly, finding a combination of objects and concurrency is not new as a notion –
related notions are summarized in the following paragaraph – but providing a fully formalized
and mechanized calculus including typing for this combination is. Mechanical proofs, though
more difficult to perform, are more reliable because they should contain no error. This article
shows that theorem proving techniques can handle distributed features of programming
languages. Our work is an important step toward the mechanisation of calculi for distributed
computing. The calculus is a model for distributed frameworks relying on active objects or
on actors as explained below.

Object and Distribution: The Active Object Model

The underlying principle for distribution considered in this paper originates from Actors
(Agha, 1986; Agha et al., 1997). Our calculus provides a model of computations that are
distributed in the same way as the actor or the active object paradigm. In those paradigms,
distributed computation relies on absence of sharing between processes allowing them to be
placed on different machines. Those models feature asynchronous RMI-like communications.
We detail below some characteristic distributed languages adhering to those principles.

Principles of actors are the following. Each actor is an independent functional process,
i.e., an object together with its own thread. Actors interact by asynchronous message
passing. They receive messages in their inbox and process them asynchronously. Instead of
having an internal state, actors can change their behaviour, i.e., their reaction to received
messages. Actors are some form of active objects. Our approach is to take distribution
and parallelism notions similar to actors but fit them into a calculus of classical objects.
This article introduces a formalisation, both on paper and in a theorem prover, of actor
paradigms in the context of ς-calculus.

From the original actor paradigm (Hewitt et al., 1973; Agha, 1986; Agha et al., 1997),
several languages have been designed. Some languages directly feature actors, distributed
active objects (like the ProActive (Caromel et al., 2006) library), or other derived paradigms.
The calculus ASPfun provides a simple model for such languages.

The ASP calculus (Caromel et al., 2004; Caromel and Henrio, 2005) provides understand-
ing and proofs of confluence for asynchronous distributed systems; it is a formalisation of
the active object model. In ASP, active objects communicate in an actor-like manner. Ad-
ditionally, ASP uses future objects, i.e., objects for which the real value is being calculated.
Syntactically, the ASP calculus is an extension of the impς-calculus (Abadi and Cardelli,
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1996; Gordon et al., 1997) with two primitives (Serve and Active) to deal with distributed
objects.

An active object is similar to an actor in the sense that it has a request queue (corre-
sponding to the actor’s mailbox), it does not share memory with other active objects, and
active objects communicate by messages. For active objects, communications take the form
of a remote method invocation that will be treated asynchronously. We call activity the
set consisting of an active object, its request queue, the set of normal (also called passive)
objects known by the active objects, and the set of results the active object has computed.
Each active object has a single thread; only this thread is allowed to access the active object
and the passive ones.

Proactive (Caromel et al., 2006) is a Java middleware for distributed computing. It is
based on the notion of active objects and is considered as an implementation of the ASP
calculus. It is particularly designed for large scale distributed computations (clusters, Grids,
or cloud computing). Deployment is based on the notion of virtual nodes and deployment
descriptors: when an activity is created, it is associated with a virtual node, and a deploy-
ment descriptor file associates virtual nodes to real machines. As active objects do not share
memory they provide a good abstraction of location. Finally, an active object is uniquely as-
sociated to a location and an application thread (even if several active objects can be placed
on the same machine in practise). Active objects act as the unit of both concurrency and
distribution. In ProActive, the programmer only cares about splitting its computation into
independent active objects that will run in parallel; then the localisation aspect is delegated
to a different role: the deployer. It is a key feature of the programming language and the
middleware to guarantee that the program behaves the same whatever physical locations
are chosen to deploy the active objects.

Also, the Creol (Johnsen et al., 2006) language features futures with (multi)-active ob-
jects; distribution principles in Creol are quite similar to ASPfun except that Creol is an
imperative language with a more complex semantics. Johnsen et al. (2006) also advocate
the active object paradigm as a model of distributed computation: “The Creol model targets
distributed objects by a looser coupling of method calls and synchronization.” The mecha-
nised formalisation of an active object language is a major contribution of this paper. Such
a formalisation will increase the confidence in the properties of this programming model and
our understanding of distributed computation.

Contribution

We define in this paper ASPfun, a calculus of functional active objects with futures. It
formalises the notion of active objects presented in the previous paragraph. For example,
the behaviour of ProActive active objects follows quite faithfully the semantics of ASPfun,
and thus properties proved here can be transferred to this context. Compared to imperative
ASP, ASPfun investigates the typing of active objects and ensures progress properties in a
functional context.

The language, its type system, and all properties have been completely formalised
(http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle) and proved
in Isabelle/HOL (Nipkow et al., 2002). This formalisation is approximatively 14000 lines,
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only 10% dealing with the language definition, and the rest dealing with the proof of ASPfun

properties. We also believe that the formalisation of a calculus like ASPfun in a theorem
prover will be helpful in the future design of distributed languages and can provide a reli-
able basis for proofs using paradigms such as distributed objects, futures, remote method
invocations, actors, or active objects. Our main contributions are:

• A functional active object calculus with futures and its properties. We illustrate the
expressiveness of the calculus on a couple of examples.

• A type system for active object languages.

• An investigation on how to provide a type-safe calculus featuring active objects and
futures, where typing ensures progress.

• A formalisation of those features in a theorem prover, that will allow further investi-
gations on futures, typing, and active objects paradigms.

• A comparison of different techniques for representing binders together with two im-
plementations of our framework using two different techniques.

ASPfun is the first calculus to our knowledge to feature those characteristics, however each
of those characteristics exists in some distributed programming language, and sometimes in
other calculi. In this context, the main contribution of this paper is the formalisation of
these features as a single calculus, but mainly the mechanised formalisation of this calculus
in a theorem prover. This paper will provide a complete description of our formalisations,
an analysis of the technical decisions that we have taken to represent distributed objects in
Isabelle/HOL, and an overall conclusion on the techniques we used and the tools we provide.

This article is organised as follows. Section 2 presents ASPfun and its semantics. Two
examples illustrate the calculus in Section 3. Section 4 gives first properties of the calculus
focusing on well-formed configurations and on the impossibility to create cyclic dependen-
cies. Section 5 provides a type system for ASPfun ensuring both subject-reduction and
progress. Some details on the formalisation in Isabelle/HOL and on the major proofs are
given in Section 6; this section particularly details binder representation. Section 7 discusses
alternative semantics we could have chosen. Finally, Section 8 details our position relatively
to existing distributed languages and calculi and Section 9 concludes by a summary of our
achievements and a discussion of the properties of ASPfun as presented in this paper.

2. Syntax and Semantics

This section presents the ASPfun calculus. We first define its syntax and explain its
principles. Then, we give a small-step operational semantics for the calculus.
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2.1. Syntax

We use three sets of identifiers: the labels of ς-calculus methods (li), the activities
(α,β,. . . ), and the futures (fi). Like in ς-calculus in ASPfun every term is an object either
given by its definition or returned by a term evaluation. The syntax of ASPfun includes object
definition, method invocation, and method override inherited from ς-calculus. An object
consists of a set of labelled methods. A method is a function with two formal parameters:
one represents self, i.e., the object in which the method is contained, the other, which is
new in ASPfun, is an actual parameter given at invocation time. Object fields are considered
as degenerate methods not using the parameters. A method call is addressed to an object
and receives an object as parameter. A method update acts on an object providing a new
value for one method possibly defining it. ς-calculus terms are identified modulo renaming
of bound variables.

s, t ::= x variable
| [lj = ς(xj, yj)tj]

j∈1..n (∀j, xj 6= yj) object definition

| s.li(t) (i ∈ 1..n) method call

| s.li := ς(x, y)t (i ∈ 1..n, x 6= y) update

| Active(s) Active object creation

| α active object reference
| fi future reference

Table 1: ASPfun syntax

One of the basic principles of ASPfun is to perform a minimal extension of the syntax of
ς-calculus. ASPfun programs only use one additional primitive, Active, for creating an active
object. The syntax of ASPfun is shown in Table 1; the static syntax (the programs) consists
of only underlined constructs; future and active object references are created at runtime.

While the syntactic extension of ς-calculus is minimal, the semantics, that we will define
in the following, is (almost) entirely new. For example, in Table 2, only the two first rules
are an adaptation of ς-calculus’ semantics; all the others are specific to ASPfun.

2.2. Informal Semantics of ASPfun

The semantics of the local object calculus is similar to the one of Abadi and Cardelli
(1996). A method invocation reduces to the method body where formal parameters are
replaced by actual ones: [l = ς(x, y)a].l(b) reduces to a where x is replaced by [l = ς(x, y)a]
and y is replaced by b. A method update returns a new object replacing the original method
by the one on the right side of ’:=’. We focus now on the distributed features of ASPfun.

A configuration is a set of activities. Each activity possesses a single active object, which
is a ς-calculus term. Activating an object, Active(s), means creating a new activity with
the object s to be activated becoming an active object. It is immutable. The activity is the
unit of distribution. A request sent to an activity is an invocation to the active object; it is
processed by the activity. The set of requests processed by an activity is called request queue
by similarity with the active object model but, here, as the calculus is functional, requests
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can be treated in an unordered fashion. Indeed, as we do not have any side effect, the order
of execution of request has no influence on the result.

Figure 1 illustrates the basic concepts of ASPfun. It shows a configuration consisting of
two activities. In each activity an ellipse represents the active object, and each rectangle
is a request (i.e., maps a future identifier to a term being evaluated). In ASPfun, all the
requests can be evaluated in parallel.

α β

. . . β.l(s) . . . 

active object

activity

request queue

. . . fk . . .

t

. . .

. . .

. . .

. . .

. . .

t'

t'.l(s)

configuration
activity reference

future reference

Figure 1: Example configuration in ASPfun with two activities.

Every message sent toward an activity is a method call to the activate object. Such a
remote method invocation (also called request) is asynchronous: the effect of this method call
is – both – to create a new request in the request queue of the destination and to replace the
original method invocation by a reference to the result of the created request. A reference
to a (promised) result is called a future. In ASPfun, futures are entities that can be passed
to other activities, e.g., as arguments or results of requests; several activities may use the
same future. Trying to access the result referenced by a future (e.g., invoking a method
on it) is not possible until the future has been received. The current term of any request
(even partially evaluated) can be returned at any moment: the current term for the request
replaces the corresponding future. This operation is called a reply. We chose to allow replies
with a partially evaluated term because it fits well with the functional nature of the calculus;
but we will see in Section 7 that a more classical semantics returning only requests entirely
evaluated also guarantees progress. Future values must be stored forever because future
references can spread over the activities and, without a mechanism for counting the future
references, it is impossible to know if a future reference still exists in the system. A garbage
collection mechanism for future would detect whether a future is still referenced; garbage
collection of futures is not studied in this paper.
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Figure 1 can also be considered as an illustration of a method call: the configuration
consisting of the first line of the request queues is transformed into the configuration con-
sisting of the second lines of the request queues, the reference to the activity β is lost, and
the reference to the future fk is created together with a request computing fk in β.

Reduction can occur in any request of any activity. The only restriction is that an
object cannot be sent to another activity (e.g., as a request parameter) if this object has
free variables, else such variables would escape their scope and the moved object would be
meaningless. To better understand this restriction, suppose one tries to evaluate the sub-
term ς(x, y)remoteObject.send(y), which is the body of a method. Sending y first would be
meaningless as this variable is bound by ς(x, y) and it would mean nothing in the remote
object. We force to perform evaluation until the sent terms have no more free variables; in
the example we would wait until the method is invoked with a parameter. Fortunately, the
type system ensures that a term typed in an empty environment has no free variable, which
is sufficient to guarantee that remote method invocations can be performed at some point
of the reduction.

It is difficult to give a natural semantics to the update of an active object. Indeed the
usual field update that directly modifies the value of an object field would create an addi-
tional way of communicating with an active object by changing its status without performing
a method invocation. The functional nature of the calculus (updating an object creates a
copy) oriented us toward the following solution: a method update on an active object creates
a new activity with the method updated.

Proving confluence for ASPfun would lead to numerous technical difficulties and is out of
the scope of this paper. Informally, depending on the execution, the set of created activities
and the number of requests may vary, but the result of the computation is always the
same. For example, depending on the order of execution an activity creation may precede
or succeed a term duplication thus creating one or two activities. But if two activities are
created, they are equivalent, and, as no side effect exists in ASPfun, the two activities will
always behave the same. A similar reasoning can be applied to the possibly duplicated
requests. This explains why the calculus is confluent in the sense that it always produces
equivalent results.

As a tiny example of the semantics Active([l = ς(x, y)[]]).l([]) first creates an activity
with the object [l = ς(x, y)[]], then performs a remote invocation on the method l of this
activity (which creates a future), and finally replies replacing the future by the result of the
invocation, []. More formally, assuming Active([l = ς(x, y)[]]).l([]) is being evaluating inside
activity α for calculating the value for a future f0 (notations will be detailed in the next
section):

α [(f0 7→Active([l = ς(x, y)[]]).l([])), . . .]→‖ α [(f0 7→β.l([])) . . .] ‖ β [∅, [l = ς(x, y)[]]]
→‖ α [(f0 7→f1) . . .] ‖ β [(f1 7→[]), [l = ς(x, y)[]]]
→‖ α [(f0 7→[]) . . .] ‖ β [(f1 7→[]), [l = ς(x, y)[]]]

We consider this work as a reliable basis for further studies on stateless objects, giving a
semantics for autonomous services, which in case they are stateless can be implemented such
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that they never dead-lock (i.e., they always progress). ASPfun can also represent component-
like distributed systems interacting by invocation of services: an active object exposes its
methods to the external world and holds references to required external services provided
by other active object.

2.3. Small-Step Operational Semantics

The semantics of ASPfun necessitates the definition of some structures that are used for
the dynamic reduction. First, we define a configuration C as an unordered set of activities:
a configuration is a mapping from activity identifiers to activities. Each activity is com-
posed of a request queue (mapping from future identifiers to terms) and an active object
(term). Configurations are identified modulo reordering of activities and of requests inside
an activity.

C ::= αi[(fj 7→sj)
j∈Ii , ti]

i∈1..p where {Ii} are disjoint subsets of N

As futures are referenced from anywhere, two requests must correspond to two different
futures; uniqueness is ensured in this paper by indexing futures over disjoint families. We
use the term local semantics to refer to the semantics expressing the execution local to each
activity, where an activity is the unit of distribution. Abadi and Cardelli (1996) present var-
ious ς-calculi that only consider objects and their manipulation as primitive; local semantics
of ASPfun (two first rules of Table 2) is just an adaptation of this work. More precisely, local
semantics of ASPfun extends ς-calculus with a second parameter for methods.

Classically we define contexts as expressions with a single hole (•). E[s] denotes the
term obtained by replacing the single hole by s.

E ::= • | [li = ς(x, y)E, lj = ς(xj, yj)t
j∈(1..n)−{i}
j ] |E.li(t) |

s.li(E) |E.li := ς(x, y)s | s.li := ς(x, y)E|Active(E)

For a better integration with the distributed calculus, we choose a small-step semantics
(→ς) for the ς-calculus. It is composed of the two first rules of Table 2; one invokes a method
(using the invoked object as first parameter), the other updates a method, i.e., it creates a
new object where one method is replaced by a new one.

To simplify the reduction rules, we let Q,R ::= (fij 7→ sij)
j∈1..np range over request

queues and identify mappings modulo reordering: α[fi 7→ si :: Q, b] :: C is a configuration
containing the activity α which contains a request fi 7→si, where C is the remainder of the
configuration that cannot contain an activity α. Now, α[Q, s] ∈ C means: α is an activity
of C with request queue Q and active object s: α[Q, s] ∈ C ⇔ ∃C ′. C = α[Q, s] :: C ′.
Similarly, (fi 7→s) ∈ Q stands for: a request of Q associates s to the future fi. The empty
mapping is ∅; the domain of a mapping is dom; e.g., dom(C) is the set of activities defined
by C. Predicate noFV(s) is true if s has no free variables (the only binder being ς this
definition is classical). The parallel reduction →‖ on configurations is defined in Table 2.

Classically, the substitution s{x ← t} is capture avoiding (renaming is performed to
avoid free variables in t to be captured by binders in s), whereas the replacement of • by a
term in a context is not.
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call
li ∈ {lj}j∈1..n

E
[
[lj = ς(xj, yj)sj]

j∈1..n.li(t)
]
→ς E

[
si{xi ← [lj = ς(xj, yj)sj]

j∈1..n, yi ← t}
]

update
li ∈ {lj}j∈1..n

E
[
[lj = ς(xj, yj)sj]

j∈1..n.li := ς(x, y)t
]
→ς E

[
[li = ς(x, y)t, lj = ς(xj, yj)s

j∈(1..n)−{i}
j ]

]
local

s→ς s
′

α[fi 7→s ::Q, t] :: C →‖ α[fi 7→s′ ::Q, t] :: C

active
γ /∈ (dom(C) ∪ {α}) noFV(s)

α[fi 7→E[Active(s)] ::Q, t] :: C →‖ α[fi 7→E[γ] ::Q, t] :: γ[∅, s] :: C

request

fk fresh noFV(s) α 6= β

α [fi 7→E[β.l(s)] ::Q, t] :: β[R, t′] :: C →‖ α [fi 7→E[fk] ::Q, t] :: β [fk 7→t′.l(s) ::R, t′] :: C

self-request

fk fresh noFV(s)

α [fi 7→E[α.l(s)] ::Q, t] :: C →‖ α [fk 7→t.l(s) :: fi 7→E[fk] ::Q, t] :: C

reply
β[fk 7→s ::R, t′] ∈ α[fi 7→E[fk] ::Q, t] :: C

α[fi 7→E[fk] ::Q, t] :: C →‖ α[fi 7→E[s] ::Q, t] :: C

update-AO
γ /∈dom(C)∪{α} noFV(ς(x, y)s) β[R, t′]∈α[fi 7→E[β.l:=ς(x, y)s] ::Q, t] ::C

α[fi 7→E[β.l := ς(x, y)s] :: Q, t] :: C →‖ α[fi 7→E[γ] :: Q, t] :: γ[∅, t′.l := ς(x, y)s] :: C

Table 2: ASPfun semantics

• local performs a local reduction inside an activity: one step of the reduction →ς is
performed on one request.

• active creates an activity; the term s passed as argument to the Active primitive
becomes the active object. The newly created activity receives a fresh activity identifier
γ. Initially, the new activity has an empty request queue, and γ replaces the activation
instruction Active(s) thus allowing future invocations to this activity.

• request sends a request from the activity α to the activity β with α 6= β. A new
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request is created at the destination invoking the method l on the active object (t′); a
fresh future fk is associated to this request, and replaces the invocation on the sender
side. Freshness is defined classically: fk is fresh in C if ∀α[Q, t]∈ C, fk /∈ dom(Q).

• self-request is the request rule when the destination is the sender, α= β. The
semantics of this rule is similar to the preceding one but, as the request queue is
modified on both the sender and the receiver side, it would be difficult to express a
single simple rule for the two cases.

• reply updates a future: it picks the request calculating a value for the future fk and
sends the current value of this request (s) to an activity that refers to the future. The
request may be only partially evaluated meaning a reply to a request is enabled as
soon as the method invocation is performed. Returning partial replies can have the
effect to duplicate computation and will be further discussed in Section 7. Necessarily,
noFV(s) holds because, as an active object and a transmitted parameter have no free
variables, a request value never has free variables. This time, the structure of the rule
avoids introducing a separate rule for α = β.

• update-AO updates a method of an activity β[R, t′]. It creates a new activity whose
active object performs a (local) update on t′: t′.l := ς(x, y)s. It requires that the new
method definition for l has no free variable.

The requirement noFV(s) for the communicated terms is necessary. Indeed, communi-
cating a term with free variables would cause variables to escape the scope of their binder
as explained in Section 2.2. In Section 7, we will discuss the choices that have been made
in the ASPfun semantics and the alternative possibilities.

2.4. Basic ς-calculus Datatypes

For reasons of completeness of this paper, we introduce here the definitions of standard
datatypes in the ς-calculus (Abadi and Cardelli, 1996) that are used in this paper. They
give a good illustration of encoding of basic datatypes in ς-calculus.

Booleans and conditional.

true = [ if = ς(x, y)x.then(y), then = ς(x, y)[], else = ς(x, y)[] ]

false = [ if = ς(x, y)x.else(y), then = ς(x, y)[], else = ς(x, y)[] ]

if b then c else d = ((b.then := ς(x, y)c).else := ς(x, y)d).if([])

In the third line above, x, y /∈ FV (c) ∪ FV (d); [] denotes the empty object. The definition
shows how – similar to λ-calculus – the functionality of the constructor is encoded in the
elements of the datatype: when b is true its method if delegates to the method then, filled
with term c, when false, if delegates to else, executing term d.
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Lists.

c :: l = [hd = ς(x, y)c, tl = ς(x, y)l,mty = false ]

hd l = l.hd

tl l = l.tl

〈〉list = [hd = ς(x, y)[], tl = ς(x, y)[],mty = true ]

l = 〈〉list = l.mty

In the first line above, x, y /∈ FV (c) ∪ FV (l); [] denotes again the empty object. Lists
are encoded as accumulation of first elements in the head field hd; the predicate judging
emptiness of a list is an abbreviation for the third field mty that always tracks whether a
list is empty.

3. Examples

This section illustrates the ASPfun calculus with two examples, one focusing on futures,
and the other showing a few less conventional features of the calculus.

3.1. A Broker

The following example illustrates some of the advantages of futures for the implemen-
tation of services. The three activities hotel α, broker β, and customer γ are composed
by ‖ into a configuration (to improve readability, ‖ separates the different activities in the
examples). Here, the customer γ wants to make a hotel reservation in hotel α. He uses
a broker β for this service by calling a method book provided in the active object of the
broker. We omit the actual search of the broker β in his database and instead hardwire the
solution to always contact some hotel α. That is, the method book is implemented as a call
ς(x, date)α.room(date) to a function room in the hotel α. Also the internal administration of
hotel α is omitted; its method room just returns a constant bookingreference. Initially, only
the future list of the customer γ contains a request for a booking to broker β; the future lists
of α and β are empty. The following steps of the semantic reduction relation →‖ illustrate
how iterated application of reduction rules evaluates the program.

γ[f0 7→β.book(date), t]
‖ β[∅, [book = ς(x, date)α.room(date), . . .]]
‖ α[∅, [room = ς(x,date)bookingreference, . . .]]

The following step of the semantic reduction relation →∗‖ creates the new future f1 in β by
rule request, this call is reduced according to local, and the original call in the client γ
is replaced by f1.

γ[f0 7→f1, t]
‖ β[f1 7→α.room(date), . . .]
‖ α[∅, [room = ς(x,date)bookingreference, . . .]]
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The parameter x representing the self is not used but the call to α’s method room with
parameter date creates again by rule request a new future in the request queue of the
hotel activity α that is immediately reduced due to local to bookingreference.

γ[f0 7→f1, t]]
‖ β[f1 7→f2, . . .]
‖ α[f2 7→bookingreference, . . .]

Finally, the result bookingreference is returned to the client by two reply-steps: first the
future f2 is returned from the broker to the client γ and then this client receives the book-
ingreference via f2 directly from the hotel α.

γ[f0 7→bookingreference, t]
‖ β[f1 7→f2, . . . ]
‖ α[f2 7→bookingreference, . . .]

The example is intentionally simplified to focus on the flow of control given by the requests,
replies, and the passing on of the futures: the booking reference can flow directly to the
customer γ possibly without passing by the broker β. This shows that futures allow the im-
plementation of efficient communication flows. The example further illustrates how futures
can be employed to provide some confidentiality. The broker β does not need to give away
his data base of hotel references: he can instead return just a reference to the result of his
negotiations; the booking reference.

3.2. A Service Provider

We illustrate how ASPfun can be used to implement a (generic) service detailing on the
control structure and the service administration while abstracting the actual service content.
Eventually, we use the informal description “some function on client data” to denote the final
function representing the service. What we are interested in is the global service architecture.
We want to show how the active object update – generating a new object on update – can
be employed efficiently to support creation and delegation of service objects. The service
scenario uses three active objects: a client, a server, and a service.

A client object can be any object having some data that is passed to the service by a
request. Furthermore, each client can be started by supplying a corresponding server s. The
method start generates a service request with the client’s data on its request queue. The
server object is defined below. Note that the method invocation s.serve(x.data) accepts as
parameter x.data due to our extension of the parameter-less ς-calculus.1

client ≡ [data = “some data”,
start = ς(x, s)(s.serve(x.data)),
. . . ]

1In the ς-calculus the parameter has to be simulated by updating a separate field in the object.
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On the other side, the service is an object for which a new instance will be generated for the
client’s use. Such a new instance is created by server objects below by updating the field
client data of a service object which automatically creates a new active object representing
the service for the client.

service ≡ [client data = “some data”,
actual service = “some function on client data”,
. . . ]

A server object generates an individual service personalised by the client’s data by instanti-
ating an active object representing the basic service. Initially, the field base service contains
the empty object but during initialisation this will be updated.

server ≡ [base service = [],
serve = ς(x, d) (x.base service).client data := d]

3.2.1. Initialisation

We first describe how the service is initialised. The ASPfun program initialising the
system is a base object that has a method init. The initial configuration will be defined in
Section 4.3. It contains a single activity with a unique request. In our case, this request is
the activation of the init object and the corresponding call Active([init = . . . ]).init.

Now, init needs to start clients that know this server. We can use the following ASPfun

object to start one client,

Active(client).start(Active(server.base service := Active(service)))

where “client”, “server”, and “service” are the abbreviations given before. For several clients
being started in the init method, we need some iterator construct. We define a map function
for a method name f as follows. This function applies the method f on each object of a
list of objects l while using s as a second parameter to all these calls. It returns a list of
objects (which is itself an object). The operator :: is the list constructor, 〈〉list the empty
list, hd and tl give first element and rest of a list, and l = 〈〉list is the empty-list predicate.
We, furthermore, use the let and if-then-else construct presented in Section 2.4.

mapf = ς(x, (s, l)) if l = 〈〉list then 〈〉list
else (hd l).f(s) :: (x.mapf (s, tl l)) end

Now, we use the following list of n+ 1 occurrences of client activations,

Λ = 〈Active(client.data := d0), . . . ,Active(client.data := dn)〉

where the di denote the different data items of the clients. Summarising, the definition of
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the user program is as follows.

Active([ init = ς(x, y)
let Λ = . . .

S = Active(server.base service := Active(service))
in x.mapstart((S,Λ)),

mapstart = . . . ]).init

This user program sent as the only request in the initial activity α sets the server into action.

3.2.2. Server in Action

In this section, we show how the server works. Let us first show the configuration after
initialisation; the Active commands have all been evaluated; the evaluation of the activation
list Λ has created client instances γi, i ∈ {0, . . . , n}; the evaluation of S in init has

• created a service object σ by evaluating Active(service),

• created a server object Σ by evaluation of Active(server.base service := σ),

• sent start requests to all client objects γi by evaluating the mapstart invocation putting
Σ.serve(γi.data) on their request queues.

Note that we choose to evaluate first the innermost service activation, then S itself, before
we pass it to mapstart. This leads to the particular service architecture we have in mind;
a different order creates several servers ultimately producing the same results (see remark
on confluence in Section 2.2) but it would be less economical. The obtained configuration
additionally contains an activity ι for the initialiser object with a single served request (init)
and another α for the initial configuration.[

γ0[f0 7→Σ.serve(γ0.data), [. . . ]],
. . .
γn[fn 7→Σ.serve(γn.data), [. . . ]],
Σ[∅, [base service = σ,

serve = ς(x, d) (x.base service).client data := d]],
σ[∅, service],
ι[f ′ 7→[〈f0, . . . , fn〉], [init = . . . ,mapstart = . . .]],
α[f 7→f ′, []]

]
Evaluating the request of the first client γ0, the above configuration reduces to one in which
the server Σ holds one request for creating a service for γ0.[

γ0[f0 7→fn+1, [. . . ]],
. . .
Σ[fn+1 7→(σ.client data) := γ0.data, [. . .]],
σ[∅, service], . . .

]
14



Next, evaluation of future fn+1 creates a new service object σ′ for this service call with the
first client’s data γ0.data injected as client data in σ′ while Σ’s request queue holds now the
activity reference σ′ in future fn+1.[

γ0[f0 7→fn+1, [. . . ]],
. . .
Σ[fn+1 7→σ′, [. . . ],
. . .
σ′[∅, [client data = γ0.data,

actual service = “some function on client data”]], . . .
]

The rule reply returns the activity reference σ′ as a result to the client γ0 by future fn+1.[
γ0[f0 7→σ′, [. . . ]],
. . .
Σ[fn+1 7→σ′, [. . . ],
. . .
σ′[∅, [client data = γ0.data,

actual service = “some function on client data”]], . . .
]

Now, the client γ0 has access to its service σ′ in a personal instantiation. The client may
call at leisure the services of σ′ – using this reference to his “personalised” service. The
following calls of the other clients γ2, . . . , γn all have a similar effect. For each of them a new
instance of the first service object σ is automatically created by the semantics of update. All
clients finally receive an activity reference and all have been served by the same server Σ.
The server in action is illustrated in Figure 2 depicting the moment just when the second
client’s service call is launched to the server.

As a further extension to this example, we could consider programming a central registry
for the service objects. To this end, we just change the init method of the base object to
make a final update to a local field registry to store the result of the activation map to all
clients.

[init = ς(x, y)
let Λ = . . .

S = Active(server.base service := Active(service))
in x.registry := (x.mapstart(S,Λ)),

registry = 〈〉list,
mapstart = . . .]

With this changed base object, the call to init has exactly the same effect as before. Only
as a final step, the base object is updated to keep the results list of all the created client
objects (and thereby also of the services).
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Figure 2: Server in action.

4. Properties of ASPfun

This section presents two major properties of ASPfun: the semantics is well-formed; and
reduction does not create cycles of futures and activity references.

4.1. Well-formed Configuration

To show correctness of the semantics, we define a well-formed configuration as referencing
only existing activities and futures; then we prove that reduction preserves well-formedness.

Definition 4.1 (Well-formed configuration). A configuration C is well-formed, denoted
wf (C), if and only if for all α, fi, s, Q, and t each of the following holds:

α[Q,E[β]] ∈ C ∨ α[fi 7→E[β] :: Q, t] ∈ C ⇒ β ∈ dom(C)

α[Q,E[fk]]∈C ∨ α[fi 7→E[fk] ::Q, t] ∈ C ⇒ ∃ γ, R, t′. γ[R, t′]∈C ∧ fk∈dom(R)

We have shown that, starting from a well-formed configuration, the reduction shown in
Table 2 always reaches a well-formed configuration.
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Property 1 (Reduction preserves well-formedness).

(s→‖ t ∧ wf (s)) ⇒ wf (t)

This can be considered as a correctness property for the semantics of ASPfun: no ill-
formed configuration can be created by the reduction.

4.2. Absence of Cycles

Informally, ASPfun avoids blocking method invocations because a not fully evaluated
future can be returned to the caller at any time. The natural question arises whether there
is the possibility for live-locks: a cycle of communications (here, a cycle of replies in fact) in
which no real progress is made apart from the actual exchange of communication. However,
we can show that, given a configuration with no cycle, any possible configuration that may
be derived from there has no cycle either. The cycles we consider are formed of activity
references and futures.

We say that an activity or a future knows another one if it holds a reference to it. An
activity holds a reference if it has this reference inside its active object. A future holds
a reference if the request computing this future contains this reference. Table 3 shows
the rules defining the knowsC relationship for a configuration C together with the nocycle
property where knows+C is the transitive closure of knowsC (r knows+C r′ ⇔ r knowsC r′ ∨
∃r′′.(r knowsC r′ ∧ r′′ knows+C r′)). It is necessary to interleave references to futures and
activities in the definition of knowsC because, for example, a reference from an active object
becomes a reference from a future when a request rule is evaluated.

α[Q,E[β]] ∈ C
α knowsC β

α[fi 7→E[β] :: Q, t] ∈ C
fi knowsC β

α[Q,E[fk]] ∈ C
α knowsC fk

α[fi 7→E[fk] :: Q, t] ∈ C
fi knowsC fk

nocycle(c)⇔ ¬∃r. r knows+C r

Table 3: The nocycle property

We proved that the reduction defined in Table 2 maintains the absence of cycles for a
well-formed configuration.

Theorem 1. Reduction does not create cycles:

nocycle(C) ∧ wf(C) ∧ C →‖ C ′ ⇒ nocycle(C ′)

The theorem relies on the fact that domains of request queues are disjoint, which is enforced
by the definition of a configuration in ASPfun. Absence of cycles ensures that there are
no live-locks related to the distributed aspects of ASPfun, i.e., no infinite cycle of replies.
Live-locks that can exist in ASPfun are inherited from ς-calculus: they are either infinite
loops inside a ς-calculus term or infinite sequences of method calls (distributed or not).
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Figure 3: A cycle of future and activity references.

Figure 3 shows cycles of futures and activity references. We have two cycles, one con-
sisting of the arrows numbered {1, 2, 4, 5}, another one is formed by the arrows {3, 4, 5, 6}.

Absence of cycle limits the expressiveness of the language (no cross-references), but this
restriction is inherited from the functional nature of the language. Indeed, functional lan-
guages have no references, whereas active objects and futures create some kind of references;
preventing cycles and modification is necessary to keep the functional nature of ASPfun.

4.3. Initial Configuration

This section shows how a reasonable initial configuration can be built from a program.
In a usual programming language, a programmer does not write configurations but usual
programs invoking some distribution or concurrency primitives (in ASPfun Active is the only
such primitive). This is reflected by the ASPfun syntax given in Section 2.1. A “program” is
a term s0 given by this static syntax (it has no future or active object reference and no free
variable). In order to be evaluated, this program must be placed in an initial configuration.
The initial configuration has a single activity with a single request consisting of the user
program:

initConf(s0) = α[f0 7→s0, []]

This configuration is well-formed, and the activity α will never be accessible. Consequently,
any reachable configuration is well-formed. We also see that the initial configuration has no
cycles, and Theorem 1 ensures that any reachable configuration has no cycles.

Property 2. Any configuration reachable from an initial configuration is well-formed and
has no cycles (→∗‖ is the reflexive transitive closure of →‖).

initConf(s0)→∗‖ C ⇒ wf(C) ∧ nocycle(C)
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5. Typing Active Objects

This section provides a type system for ASPfun. Starting from ς-calculus basic type sys-
tem, we first define typing for the Active primitive; then we define type-checking rules for an
ASPfun configuration. After the classical subject-reduction property, we show that the type
system ensures type uniqueness, well-formedness of configurations, and more importantly
progress. We will see that typing ensures that no method can be invoked on a term that is
unable to handle it; the semantics ensures that no invocation or update on a future or an
activity can be indefinitely blocked.

5.1. A Local Type system

We first adapt the simple type system that Abadi and Cardelli (1996) devised as Ob1.
Object types are of the form [li : Bi�Di]

i∈1..n. The syntax of ASPfun is extended by adding
type information on both variables under the binder (ς(x, y) becomes ς(x :A, y :B)). As
highlighted in (Abadi and Cardelli, 1996), adding type information on the binders ensures
type uniqueness.

Val x

x :A :: T ` x :A

Type Object
A = [li : Bi�Di]

i∈1..n ∀i ∈ 1..n, xi :A :: yi :Bi :: T ` ti : Di

T ` [li = ς(xi : A, yi : Bi)ti]
i∈1..n : A

Type Call
T ` s : [li : Bi�Di]

i∈1..n

j ∈ 1..n T ` t : Bj

T ` s.lj(t) : Dj

Type Update
A = [li : Bi�Di]

i∈1..n T ` s : A
j ∈ 1..n x :A :: y :B :: T ` t : Dj

T ` s.lj := ς(x : A, y : B)t : A

Table 4: Typing the local calculus

Table 4 defines the typing of local ASPfun terms as presented in 2.1. It is an adaptation
of the typing of Ob1 in (Abadi and Cardelli, 1996). A, B, and D range over types. The
variable T represents a type environment containing type assumptions for variables and is
identified modulo reordering. Its extension by a new assumption stating that the variable
x has type A is denoted by x : A :: T . We now authorise :: to update a mapping entry:
(x : A) :: T associates the type A to x even if an entry for x existed in T . The first rule
of Table 4 accesses the type environment. Type Object describes how an object’s type is
checked from its constituents: an object of type [li : Bi�Di]

i∈i..n is formed from bodies ti of
types Bi using self parameter xi of type A and additional parameter yi of type Bi. When a
method lj is invoked on an object s of type [li : Bi�Di]

i∈i..n the result s.lj(b) has type Dj

provided s has type Bj (Type Call). A method update requires that the updated object
has the same type as self in the new method (Type Update).

In (Abadi and Cardelli, 1996), additional rules ensure that the typing environment is
well-formed. We simplified it here by defining environment as a mapping. Also, a rule for
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Type Active
〈Γact,Γfut〉, T ` a : A

〈Γact,Γfut〉, T ` Active(a) : A

Type Activity Reference
β ∈ dom(Γact)

〈Γact,Γfut〉, T ` β : Γact(β)

Type Future Reference
fk ∈ dom(Γfut)

〈Γact,Γfut〉, T ` fk : Γfut(fk)

Type Configuration

dom(Γact) = dom(C) dom(Γfut) =
⋃
{dom(Q) | ∃ α, a. α[Q, a] ∈ C}

∀α[Q, a] ∈ C.
{〈Γact,Γfut〉,∅ ` a : Γact(α) ∧
∀ fi∈dom(Q). 〈Γact,Γfut〉,∅ ` Q(fi) : Γfut(fi)

` C : 〈Γact,Γfut〉

Table 5: Typing configurations

correct formation of object types is introduced in (Abadi and Cardelli, 1996) mainly ensuring
that there is no infinitely nested object type. This last assumption has been omitted here as
it did not seem necessary and, indeed, the properties shown below have been mechanically
proved without any additional assumptions on type formation.

5.2. A Type System for ASPfun

The type system for ASPfun is based on an inductive typing relation on ASPfun terms; it
is defined in Table 5. From local typing (Table 4), in addition to types of variables, we need
to refer to types for futures and activities. Thus, we add a pair of parameters 〈Γact,Γfut〉 in

the assumptions of a typing statement: we write 〈Γact,Γfut〉, T ` x : A instead of T ` x : A.

These parameters consist of a mapping Γact from activities to the type of their active object
and another one Γfut from future identifiers to the type of the corresponding request value.

Thus, we first adorn each rule of Table 4 with those two additional parameters.
Then, we add to these rules the three first rules of Table 5 that define the local typing

of ASPfun. These rules allow the typing of references to activities and futures and define
typing of the Active primitive: the type of an activated object is the type of the object.

The last rule of Table 5 incorporates into a configuration the local typing assertions. This
rule states that a configuration C has the configuration type 〈Γact,Γfut〉 if the following

conditions hold.

• The same activity names are defined in C and in Γact;

• the same future references are defined in the activities of C and in Γfut;

• for each activity of C, its active object has the type defined in Γact;
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• and each request has the type defined in Γfut for the corresponding future.

Similarities can be found between typing of activity or future references and reference
types (Pierce, 2002). A closer work seems to be the typing rules for futures (Niehren et al.,
2006).

5.3. Basic Properties of the Type System

Let us start by a couple of simple properties of the typing system. First, type-uniqueness
existing for Ob1 is also verified by our type system.

Property 3 (Unique Type). Each expression in ASPfun has a unique type.

〈Γact,Γfut〉, T ` a : A ∧ 〈Γact,Γfut〉, T ` a : A′ =⇒ A = A′

Well-typed configurations are well-formed. Indeed, if an activity or a future is referenced
in the configuration, it must have a type and thus be defined in Γact or Γfut, and also in

the configuration.

Property 4 (Typing ensures well-formedness). ` C : 〈Γact,Γfut〉 ⇒ wf (C)

5.4. Subject Reduction

Subject reduction ensures that reduction preserves the typing relation. Therefore, it is
often also called preservation. We prove subject reduction of ASPfun with respect to the
type system given in the previous section.

We prove first the subject reduction property for the local reduction:

Property 5 (Local Subject Reduction).

〈Γact,Γfut〉, T ` t : A ∧ t→ς t
′ ⇒ 〈Γact,Γfut〉, T ` t

′ : A

Then, we prove subject reduction for the full typing relation of configurations.

Theorem 2 (Subject Reduction).

`C :〈Γact,Γfut〉 ∧ C →‖ C ′ ⇒ ∃ Γ′act,Γ
′
fut. `C

′ :〈Γ′act,Γ
′
fut〉

where Γact ⊆ Γ′act, and Γfut ⊆ Γ′fut.

Note that activities and futures may be created by the reduction and thus the typing
environment may have to be extended.
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5.5. Progress and Absence of Dead-locks

Finally, we can prove progress for well-typed configurations. Progress states that any
expression of the language is either a result or can be reduced. In ASPfun, we prove progress
for each request of a configuration. A term is a result, i.e., a totally evaluated term, if it is
either an object (like in (Abadi and Cardelli, 1996)) or an activity reference.

isresult (s)⇔ ∃li, ti, A. s = [li = ς(xi : A, yi : B)ti]
i∈1..n ∨ ∃α, s = α

The type system is useful for ensuring that every accessed method exists on the invoked
object. In fact, local typing ensures progress of local reduction. Typing for configurations
extends the typing relation to distributed objects ensuring for example that a method in-
vocation on a future will be possible once the result is returned. Absence of dead-locks for
the distributed semantics is only ensured by the functional nature of ASPfun, by the absence
of loops, and by the particular semantics of the calculus. A first notion of progress can be
proved: for a correctly typed configuration, either all requests are reduced to a future, or
the configuration can be reduced.

Property 6. ` C : 〈Γact,Γfut〉 ∧ α[fi 7→s :: Q, t] ∈ C ⇒ isresult(s) ∨ ∃C ′ . C →‖ C ′

More precisely, we can prove that the request that is not yet reduced to a result, i.e., the
term s in the theorem above, can be reduced. Unfortunately, as already shown in (Abadi
and Cardelli, 1996), ς-calculus does not ensure that a reduced term is different from the
source one, but this is an issue related to the local reduction which is not the concern of this
paper. We proved that, on the distributed side, the term really always progresses and that
no reduction loop is induced by the distributed features of ASPfun. We can reformulate the
preceding theorem:

Theorem 3 (Progress).

nocycle(C)∧ ` C : 〈Γact,Γfut〉 ∧ α[fi 7→s :: Q, t] ∈ C ⇒ isresult(s) ∨ ∃C ′ . C →‖ C ′

where C ′ can be chosen to verify: α[fi 7→s′ :: Q, t] ∈ C ′ ∧ (s′ 6= s ∨ s→ς s) .

By proving progress, we also show that ASPfun is dead-lock free: as any term that is not
already a result must progress, this ensures the absence of dead-lock.

As configurations reachable from the initial configurations have no cycle, a variant of the
progress theorem can be stated by replacing the nocycle hypothesis by the reachability from
a well-typed initial configuration:

Property 7 (Progress from initial configuration). Let s0 be a static term; if it is cor-
rectly typed (in an empty environment), then each request of any configuration C obtained
from s0 is either reduced to a value or can be further reduced; more formally:

initConf(s0)→∗‖ C ∧ 〈∅, ∅〉, ∅ `s0 :A ∧ α[fi 7→s :: Q, t]∈C ⇒ isresult(s) ∨ ∃C ′. C →‖ C ′

where C ′ can be chosen to verify: α[fi 7→s′ :: Q, t] ∈ C ′ ∧ (s′ 6= s ∨ s→ς s) .
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6. Formalisation in Isabelle/HOL

The interactive theorem prover Isabelle/HOL (Nipkow et al., 2002) offers a classical
higher order logic (HOL) as a basis for the modelling of application logics. Inductive defini-
tions and datatype definitions can be written in a way close to programming language syntax
and semantics. Semantic properties over datatypes can be expressed in a clear manner using
primitive recursion which is supported by powerful proof automation using rewriting tech-
niques. Nevertheless – unlike model checking or other fully automated proof techniques –
the expressivity of HOL comes at a price: the user has to find the gist of proofs concerning
his application logics himself even if simple simplification steps are handled automatically.

In this section we will give an outline of the mechanisation of ASPfun, its syntax, se-
mantics, type system, and proofs in Isabelle/HOL. To this end, we begin Section 6.1 by
introducing finite maps, a useful extension of Isabelle/HOL we created for representing
objects. We also discuss in some detail different techniques for representing binders when
formalising language meta-theory – necessary for the subsequent experience report. We then
describe in Section 6.2 important aspects of our proofs in a manner independent of the ac-
tual Isabelle/HOL representation. We give details on the Isabelle/HOL formalisation using
de Bruijn indices in Section 6.3. For defining the operational semantics of the local object
calculus, we adapted the semantics for the ς-calculus defined in (Henrio and Kammüller,
2007) in order to use reduction contexts. We also proved in Isabelle/HOL that both models
are equivalent or, more precisely, that both small step semantics express exactly the same
reduction.

In a constant attempt to improve the Isabelle/HOL mechanisation, we have updated
the ASPfun mechanization with a different binder technique: we replaced the classical de
Bruijn indices by a locally nameless representation that provides a more natural represen-
tation of formulae by variable names (Aydemir et al., 2008a). The experience of having
thus performed the entire formalisation of ASPfun twice enables us to provide a profound
comparison of the two representation techniques in Section 6.4.

6.1. Tools for Programming Languages and Semantics

6.1.1. Finite maps: deep versus shallow

The embedding of the language ASPfun into Isabelle/HOL needs to be deep enough to
reason about the language and its semantics while also being shallow enough, i.e., using
enough basic concepts of HOL to facilitate reasoning and simulation of examples. Finite
maps are a primitive feature we needed to formalise; this feature is defined closely to the
HOL type system to reduce the depth of our embedding.

An object in the ς-calculus is a finite unordered list of named elements that is recursive
in its self-parameter: objects are finite maps. To enable primitive recursive definitions of
functions on terms we need a recursive datatype for objects. The inbred recursion of objects
forces us to use a primitive function type to represent these object maps. Thus, we use
HOL’s primitive map type to define finite maps α⇒fβ by coercing their domain α to be in
the type class finite of all finite types.
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We derive the following induction scheme from the induction rule for finite sets using a
domain isomorphism between finite maps and finite functional relations. If a property P is
valid for the empty finite map and it is, furthermore, preserved when an element is added
to the finite map by updating the map, then the property is true for all finite maps. Note,
that for the general function type ⇒ such an induction does not hold.

J P empty;∧
x (F:: α ⇒f β) y . J P F; x /∈ dom F K =⇒ P (F(x 7→ y))

K =⇒ P F

The brackets J...K indicate the conjunction of meta-level hypotheses of a rule. The addi-
tional type judgement α⇒fβ coerces F to be an fmap.

6.1.2. Binder representation

The formalisation of programming languages in rigorous frameworks, like theorem provers,
has revealed some crucial issues summarised in the POPL-mark challenge (Aydemir et al.,
2008b) a set of benchmarks for the mechanisation of language meta-theory. The problem
of the representation of binders is there identified as a central problem to the challenges.
We discuss in this section the main techniques for representing variable binders laying the
ground for the following formalisations.

Problem Statement. The representation of binders has already been recognised by Bruijn
(1972) in the Automath project as a major problem when mechanising languages. Intuitively,
a language that has local scopes and parameterisation – for example functions λx.fx – needs
to refer to the formal parameters – here x – when they occur inside these scopes – here x
occurs in the context f . The natural, human understandable way is to use variables, like
x, to define and denote formal parameters by name but variables are neither well suited
for mechanisations nor proofs. For example, variable capture may occur, that is, a variable
occurring free in a term t may accidentally be “captured” when substituting t inside a scope
where x is the name of a bound variable. For example, in (λx.xy)[λz.x/y], the free variable x
in λz.x could be captured by the substitution. To avoid this, we use a consistent renaming.
Formally, α-equivalence justifies such renamings. However, α-equivalence creates classes
of equivalent terms with equal denotation which complicates the semantics. In particular,
when fresh variables are a prerequisite inside semantic rules, the choice of α-conversions
inside a term predisposes the choice of fresh variables creating an interference that obstructs
compositional reasoning.

De Bruijn indices. The classical solution, proposed by N. G. de Bruijn, is to replace each
occurrence of a variable by an integer equal to the number of binders that have to be crossed
to reach the binder for the considered variable. In other words, a variable is replaced by the
distance from its binding scope. Note, the same “variable” may be represented by different
integers. For example, the lambda term λx.x(λy.x y) in de Bruijn notation is λ(0(λ1 0));
x is once represented as 0, once as 1. The “nominality” of terms is abstracted – semantic
denotation becomes unique but substitution becomes very technical because of the “lifting”

24



of indices when entering a binder or replacing a term under binders. Then a term that has
to be substituted at nesting depth n into another term needs to add n to all its indices
representing free variables. To this end, one first defines a “lift” operation that performs
this addition and the substitution then uses lift.

Locally nameless representation. Already at the time of first devising his concept of indices,
Bruijn (1972) suggested an alternative where indices represent bound variables (written
bvar i) and classical named variables represent free (unbound) variables (written fvar x);
open and close operations translate between those representations. This technique, known as
locally nameless representation, has since recently attracted wide attention (Aydemir et al.,
2008a). It seems very attractive as it combines unique representation provided by de Bruijn
indices with human understandable expression of specification of theorems using names –
avoiding manipulation of explicit indices, in terms, semantics, and lemmata.

The open operation, written tu, substitutes a term u for the outermost bound variable
in the term t. For example λ(bvar 0λ((bvar 1)(bvar 0)))n is equal to nλ(n (bvar 0)). The
opposite operation closes a term: given a name, the closing replaces the occurrence of
variables of this name with an index for a bound variable, such that the variable is bound
at the outermost level of the term.

A drawback of the locally nameless approach is that we need to take explicit care that we
do include only well-formed terms, i.e., only bound variables are represented by indices. The
notion of locally closed terms ensures this. E.g., λ(bvar 2) is not locally closed. Ensuring
that we manipulate only locally closed terms will have to be added as prerequisite to our
propositions when dealing with locally nameless representation. Another problem arises
when reducing a term under a binder. Here, we should close the term under a fresh variable
(to keep the term locally closed). Formally, we need: ∀x /∈ FV (t).tx→(t′)x =⇒ λ(t)→λ(t′).
The drawback of this approach is that it is sensitive to the set of free variables, that may vary
in an unexpected way. Here, the approach of cofinite quantification (Aydemir et al., 2008a) is
an important step forward. The basic idea is to abstract over the set of free variables FV(t)
and to let fresh variable be taken among the complementary of an existentially quantified
finite set L, the proposition above becomes: ∃L finite.∀x /∈ L.tx→ (t′)x =⇒ λ(t)→ λ(t′) .
This set L can then be instantiated appropriately when handling proofs.

Nominal techniques. Another approach, proposed by Urban and et al. (2006) based on work
on nominal logic by Pitts (2003), is called nominal techniques. Here, terms are identified
as a set bijective to all terms factorised by α-equivalence. Instead of using substitution,
nominal logic uses permutations of atomic names. Permutations are built from elementary
name swaps: e.g., (a, b) ·t replaces all occurrences of a by b and vice versa in t. Permutations
are only applicable if there are fresh atoms available. This is expressed by keeping track
of the support set (fresh atoms). The classical hypothesis, “there is a fresh variable” for a
term t is replaced by, “there is a finite support for x”, i.e., the set of atoms used in t is finite,
and infinitely many “fresh” atoms are available. Unfortunately, the Isabelle/HOL package
implementing nominal techniques cannot be used as it is – in our case – because we use finite
maps in our implementation; consecutively the recursive datatype defining ASPfun syntax
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is a bit more complex than the usual simple recursive construction. While it is trivial that
a finite map containing terms of finite support has a finite support, such a reasoning is not
yet supported by Urban’s package.

Higher order abstract syntax. Another technique for formalising binders is Higher Order Ab-
stract Syntax (HOAS) in which binders of applications are directly represented by binders
of the meta-level, e.g., (Roeckl and Hirschkoff, 2003; Ciaffaglione et al., 2007). Therefore,
by contrast to the above sketched approaches, HOAS is often also called the direct encoding.
For example, in Isabelle/HOL, we would use the HOL λ-abstraction to encode object-level
binders. This approach has advantages in terms of mechanisations: reductions are usually
performed automatically but it is restricted when it comes to meta-level reasoning. Some-
times, “meta-theoretic properties involving substitution and freshness of names inside proofs
and processes, cannot be proved inside the framework and instead have to be postulated”
(Honsell et al., 2001).

6.2. Crucial Aspects of the Proofs

This section details some of the parts of the formalisation that seem the most important
to us, it gives proof sketches, and is not much coupled with Isabelle/HOL.

6.2.1. Finiteness

When considering language semantics we often implicitly assume finiteness of programs
and configurations. In fact, the implicit assumption is worth mentioning: for programs it
grants induction over the recursive datatype of ς-terms, and for configurations, it permits
the assumption that there are always fresh activity and future names available. Our for-
malisation relies on this assumption. We particularly highlight the fact that it becomes
necessary to show progress. For example, to create a new activity one must find a fresh
identifier. We have shown that initial configurations and configurations reduced from them
are all finite: they have a finite number of activities and futures.

6.2.2. Absence of Cycles

Proving the absence of cycles (Theorem 1) required us several steps. We first defined a
datatype for future or activity reference and then specified the knowsC and knows+C relations
defined in Section 4.2. In order to handle the proofs, we refine the knows+C relation by
remembering the list of intermediate activities: r knows+C (L) r′ iff r knows+C r′ passing by the
references in L.

We first prove lemmata relating cycles, knows+C , and paths. E.g., if r knows+C (L) r′ and C ′

is obtained from C by just modifying the request corresponding to fk, then r knows+C′ (L) r′

provided fk /∈ L and fk 6= r. A similar lemma exists for activity references. Consequently, it
is sufficient to prove that no cycle is created by the activities and requests modified by the
considered reduction. We also show that, when r knows+C (L) r′, L can be chosen to include
neither r nor r′.

The main proof of absence of cycles is a long case analysis on the reduction rules that
uses lemmata presented above, well-formedness of the initial configuration, and shows that
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if there is a cycle in the obtained configuration, there was necessarily one in the original
configuration. As an example, we detail the main argument for the request rule referring
to the rule of Table 2 with C1 being the source configuration and C2 the obtained one.
One can first note that, as the source configuration is well-formed by hypothesis, only fi
may refer to fk in C2. Secondly, if fk knowsC2 r then either β knowsC1 r or fi knowsC1 r.
We only have to show that ¬∃L.fk knows+C2

(L) fk. By contradiction and induction on the
length of L, length 0 is impossible because β or fi would know fk in C1 which would not be
well-formed. For greater lengths, L = L′#r, and necessarily r = fi as shown above. Thus,
fk knows+C2

(L′) fi, where fk /∈ L and fi /∈ L. Consequently, fi knows+C2
(L′) fi or β knows+C2

(L′) fi
as the request for fk is only built from the request for fi and the active object of β (t′.l(s)
in Table 2). Since fk /∈ L and fi /∈ L, and only fi and fk have been modified between C1

and C2: fi knows+C1
(L′) fi or β knows+C1

(L′) fi. As fi knowsC1 β, in either case there would be
a cycle from fi in C1, which is contradictory.

Figure 3, page 17 illustrates this case of the proof. It considers the case of a request
from α to β creating the future fl and the reference depicted by the arrow 6. Additionally,
suppose a cycle is created: arrows 3, 4, 5, 6 in the figure, we consider the sub-case where
this cycle was created because of a reference in the active object in β. We decompose the
cycle into fl knows+C2

(L′) fi, with L′ consisting of the arrows 3, 4, 5 on the figure, plus arrow
6 (fiknowsC2fl). Then, necessarily, before the reduction fi was involved in a cycle passing
by β and by the path consisting of the arrows 1, 2, 4, 5, which shows the contradiction.

6.2.3. Typing and Subject Reduction

Subject reduction is handled in two phases, each proved by case analysis: one for local
and one for distributed reduction. We detail below a few useful lemmata. A first lemma
states that any term that has a type in an empty environment has no free variable:

〈Γact,Γfut〉,∅ `a :A ⇒ noFV(a)

Conversely, a term without free variable can be typed in an empty environment (in fact,
below we could prove A = A′ but this was not useful):

〈Γact,Γfut〉, T `a :A ∧ noFV(a) ⇒ ∃A′.〈Γact,Γfut〉,∅ ` a : A′

Both preceding properties are necessary to show that for an activated object or a new request
a type can be found.

〈Γact,Γfut〉,∅ `E[a] :A

∧ 〈Γact,Γfut〉,∅ `a :B ∧ 〈Γact,Γfut〉,∅ `b :B
⇒ 〈Γact,Γfut〉,∅ ` E[b] :A

This lemma is both crucial and interesting because it relates contexts and typing. As
our reduction relies on the use of contexts, this lemma is decisive for the proof of subject
reduction, Theorem 2.
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6.2.4. Proving Progress

Proving progress relies on a long case analysis on the reduction rules. We focus first on
one crucial argument: how can the absence of free variable be ensured in order to communi-
cate an object between two activities. Each request can be typed in an empty environment
(for variables); thus it does not have any free variable, and thus each sub-term of a re-
quest that is not under a binder has no free variable. We prove that one can reduce at
least the part of the request under the evaluation context F , where F ::= • |F.li(t) |F.li :=
ς(x, y) s |Active(F ). If one replaces E by F in the semantics, this prevents reduction to
occur inside the binders. Indeed, in F the term in the position of the hole has no free
variables: 〈Γact,Γfut〉,∅ `F [a] :A ⇒ noFV(a) .

Considering the other arguments of the proof, the absence of cycles ensures that an
application of a reply rule cannot return a future value which is the future itself, in which
case the configuration would be reducible but to itself. This ensures that no live-lock exists
in the distributed semantics even if the local one can create live-locks. Of course, the proof
also massively uses the fact that well-typed configurations are well-formed.

6.3. The Formal Model in Isabelle/HOL with de Bruijn Indices

This section presents a first version of the formalisation of ASPfun, its syntax, and a few
theorems in Isabelle/HOL; this version relies on de Bruijn indices. The main objective of
this section is to give a real feel for the Isabelle/HOL formalisation and outline the main
steps of the formalisation process. We use here the de Bruijn representation for the syntax
of ASPfun but the major part of the formalisation process is similar for the locally nameless
representation presented in the subsequent section.

6.3.1. Syntax

The formalisation of functional ASP is constructed as an extension of the base Is-
abelle/HOL theory for the ς-calculus (Henrio and Kammüller, 2007). The term type of the
ς-calculus is represented by an Isabelle/HOL datatype definition called dB. In this datatype
definition, objects are represented as finite maps Obj (Label ⇒fdB) type. We formalised
finite maps in the first argument of Obj using the abstract concept of axiomatic type classes.
As discussed in Section 6.1.1, it is crucial to have finite maps as a basic Isabelle/HOL type
to be able to employ the recursive datatype construction here. The second argument of
the constructor Obj is a type annotation. The resulting datatype for basic terms of ASPfun

is then as follows. Variables are represented by de Bruijn indices. A given index has two
entries: one for self, and the other for the parameter as defined by the datatype Variable.
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datatype Variable = Self nat | Param nat

datatype dB = (*The typed ASPfun datatype*)

Var Variable (*Variable - deBruijn index*)

| Obj "Label ⇒f dB" type(*Objects map labels to terms, and have a type*)

| Call dB Label dB (*Call a l b calls meth l on a with param b*)

| Upd dB Label dB (*Upd a l b updates meth l of a with body b*)

| Active dB (*Creates an active object*)

| ActRef ActivityRef (*References an active object - dynamic syntax*)

| FutRef FutureRef (*References a future - dynamic syntax*)

The type of configurations relies on partial functions expressed by the constructor ⇒| .

futmap = FutureRef ⇒| dB

configuration = ActivityRef ⇒| (futmap × dB)

6.3.2. Reduction Contexts in Isabelle

In our model we developed a simple mechanisation of a reduction context using again
the datatype construct as follows:

datatype general_context = (*a general context is a term with a hole*)

cHole

| cObj FmapLabel type general_context

| cCallL general_context Label dB

| cCallR dB Label general_context

| cUpdL general_context Label dB

| cUpdR dB Label general_context

| cActive general_context;

Isabelle/HOL internally generates rules for a datatype specification most notably induc-
tion rules for recursive types and injectivity rules for the constructors. Pattern matching
facilitates case analysis proofs crucial for reasoning with complex languages.

This representation of contexts by a specific datatype constructor exploits the power
of the efficient datatype feature of Isabelle while at the same time finding a first class
representation of the syntactical concept of “context”. For the use of contexts we define an
operator to “fill” the “hole” enabling a fairly natural notation of E↑t for E[t] (remember
this substitution is not “capture avoiding” contrarily to the variable substitution).

consts Fill :: [general_context, dB] ⇒ dB ("↑")

We use this simple function to illustrate the definition of functions in Isabelle/HOL. Func-
tions over datatypes may be defined in a particularly efficient way in Isabelle/HOL using
primitive recursion. Efficient means, in this context, that proofs involving these operators
may be mostly solved automatically using automatic rewriting techniques provided in Is-
abelle. The semantics of the Fill operator is described by the following set of equations –
again, this substitution is, unlike variable substitution, not “capture avoiding”.
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primrec
Fill cHole x = x

| Fill (cObj f T E ) x = Obj ((FLmap f)((FLlabel f) 7→ (Fill E x))) T

| Fill (cCall E l) x = Call (Fill E x) l

| Fill (cUpdL E l (y::dB)) x = Upd (Fill E x) l y

| Fill (cUpdR (y::dB) l E) x = Upd y l (Fill E x)

| Fill (cActive E) x = Active (Fill E x)

The rest of this section intensively use this operator and thus illustrates its usefulness.

6.3.3. Semantics

The parallel semantics of ASPfun is given as an inductive relation over this type of
configurations encoding the reduction relation →‖ (see Table 2). To give some flavor of the
expression of the semantic, we depict only the rule request; this rule is a crucial one for
the calculus, and it gives a representative idea of the other semantic rules. This rule is part
of an inductive definition for the reduction relation →‖ on configurations. An inductive
definition in Isabelle/HOL defines a set, here the relation →‖, by a set of simple rules. The
set defined by an inductive definition is the least set that is closed under those rules.

request:

J ∀ D ∈ dom C. fk /∈ dom(fst(the (C D))); C A = Some(m’,a’);

m’(fi) = Some(E↑(Call(ActRef B) l s)); C B = Some(mb, t’); noFV s; A6= B K
=⇒ C →‖ C(A 7→ (m’(fi 7→ E↑(FutRef(fk))), a’))(B 7→ (mb(fk 7→ (Call t’ l s)), t’))

Assumptions are enclosed in Isabelle/HOL’s meta-logic brackets JK, and conclusion is placed
after =⇒. Additionally, a partial function admits a dom operator defining the domain of the
function, and a partial function returns either None, if the function is not defined for this
value, or Some(x) if the function is defined and returns x. C(A 7→ x) represents the partial
function C where A is now given the value x.

The above code for the request rule in Isabelle clearly corresponds to the following rule
of the semantics of ASPfun. As one can notice, the main differences in Isabelle are that, first
the definition “fresh” has been directly encoded in the rule, and second a few assumptions
were used to decompose the source configuration, e.g., C A’ = Some(m’,a’) states that the
activity A of configuration C is defined by the couple m (the request queue) and a (the active
object). Even with those minor differences, it is easy to see that both rules express the same
behaviour.

request

fk fresh noFV(s) α 6= β

α [fi 7→E[β.l(s)] ::Q, t] :: β[R, t′] :: C →‖ α [fi 7→E[fk] ::Q, t] :: β [fk 7→t′.l(s) ::R, t′] :: C

6.3.4. Typing and Progress

We skip the description of the proofs related to well-formedness and decide to focus
on typing. We first define the following datatypes for object type and configuration type
and a constant typing for typing judgements. The syntactic sugar: CT, E ` a : A

abbreviates (CT, E, a, A) ∈ typing.
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datatype type = Object (Label ⇒f (type × type))

datatype Ctype = TConfig (ActivityRef ⇒| type)(FutureRef ⇒| type)

typing :: [Ctype, ((type× type) list), dB, type] ⇒ bool

The most remarkable point in the signature above is the use of (type×type) list instead
of finite maps from variables to types (cf. Section 6.4). A list is sufficient because of the
use of de Bruijn indices: the depth in the list represents the de Bruijn index; and a couple
of types is necessary because one represents the type of self, and the other represents the
parameter type.

Then this relation typing is defined using an inductive definition. The rules of the
inductive definition are exactly the typing rules for ASPfun introduced in Section 5. For
comparison we show just the rule Type Call.

J Tconf, env ` a : A; l ∈ dom A; A!l=(B,T);Tconf, env ` b : B K
=⇒ Tconf, env ` (Call a l b) : T

The operator ! selects a type field l in an object type A. Typing for configurations is also
defined as presented in Section 5. We completely proved in Isabelle/HOL all the theorems
presented in this paper. Theorems are expressed similarly in Isabelle as in the paper version.
Below is the subject reduction theorem (Theorem 2). Note that, as =⇒ can only be used
at the top-level, −→ is used to denote implication inside formulae:

theorem Csubject_reduction: ` C: CT =⇒ (∀ C’. C →‖ C’ −→ ∃ CT’. ` C’: CT’)

The theorem progress ASP init conf below is a particular instance of the progress
theorem employing the previous results that all reachable configurations are finite and have
no cycles; it corresponds to Property 7.

theorem progress_ASP_init_conf:

J init_config a →‖ C; TConfig empty empty, [] ` a : T; A∈ dom C; fi∈ C.RA K
=⇒ (isresult C.FA<fi>) ∨

(∃ C’. (C →‖ C’) ∧(C’.FA<fi> 6=C.FA<fi>∨ C.FA<fi> →ς C.FA<fi>))

6.4. Locally Nameless Representation

The main advantage of the de Bruijn representation is also its biggest handicap: indices
instead of variables get rid of α-conversion problems but are very technical. An unwelcome
effect of the lifting and substitution functions, necessary for index handling, is that there
are many lemmata that are hard to find and difficult to prove. Their difficulty is not their
theoretical depth but that they merely shuffle indices – a facility easy for a machine and hard
for a human mind. An illustrative example is the following lemma subst subst proving how
two substitutions can be swapped.

i < j + 1 =⇒
t[lift v i,lift s’ i / Suc j][u[v,s’/j],s[v,s’/j]/i] = t[u,s/i][v,s’/j]
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The locally nameless representation, on the other hand, is closer to paper style notation
due to the use of named free variables in addition to indices. The price to pay for the
gained understandability are additional concepts. Consequently, new hypotheses in rules and
theorems arise. We believe that both representations have their merits and their weaknesses
as we will point out in the following exposition of the locally nameless representation of
ASPfun.

6.4.1. Basic Constructs

The only difference of the locally nameless representation to the de Bruijn representation
concerning the terms is the addition of named free variables. This new type fVariables is
conveniently chosen to be the type string. The datatype of terms stays the same (it is named
term now instead of dB) – only the constructor Var is replaced by two new constructors Bvar
and Fvar, the former taking an index and the latter a free variable. Also at the level of
configurations there is not much difference: the type of configurations actually stays the
same. In the parallel semantics, the only difference is in the rule local where local terms
need to be locally closed in order to be reduced according to the local semantics. The
main differences in the locally nameless semantic definition is in the reduction relation for
the evaluation of the objects. Here, the new concept of named variables is supported by
operations for opening and closing of terms.

Opening and closing

Opening is a form of substitution; it corresponds to an instantiation of a bound variable
with a given subterm. While the following definition’s core part is the first clause, the others
just pass the recursion into the term structure. This first clause replaces a bound variable
if n matches the index of the parameter. Due to the two parameter types of our terms, we
always open with a pair of terms and replace depending on whether the bound is Self or
Param, by the first or second element of the pair, respectively.

primrec
open :: [nat, term, term, term] ⇒ term ("{_ → [_,_]} _")

and
open_option :: [nat, term, term, term option] ⇒ term option

where
open_Bvar: {k→[s,p]}(Bvar b) =

(case b of (Self i) ⇒ (if (k = i) then s else (Bvar b))

| (Param i) ⇒ (if (k = i) then p else (Bvar b)))

| open_Fvar: {k→[s,p]}(Fvar x) = Fvar x

| open_Call: {k→[s,p]}(Call t l a) = Call({k→[s,p]}t) l ({k→[s,p]}a)

| open_Upd : {k→[s,p]}(Upd t l u) = Upd({k→[s,p]}t) l ({(Suc k)→[s,p]}u)

| open_Obj : {k→[s,p]}(Obj f T) = Obj(λl.open_option(Suc k) s p (f l)) T

| open_Act : {k→[s,p]}(Active a) = Active ({k→[s,p]} a)

| open_ARef: {k→[s,p]}(ActRef g) = ActRef g

| open_FRef: {k→[s,p]}(FutRef f) = FutRef f

| open_None: open_option k s p None = None

| open_Some: open_option k s p (Some t) = Some ({k→[s,p]}t)
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Let us only describe the most characteristic of the other clauses: open Obj. Recursive
opening inside the object is defined by mapping a function (λl. ...) on all its methods
(most of them being undefined, None). This explains why we use two mutually recursive
functions open and open option, one of them accepting Some term or None. The function
applied to each member method is the recursive application of open but with Suc k as index,
because we entered a binder (similarly to what we would do for de Bruijn method).

Open is usually used to replace the outermost binder, i.e., {0 →[s,p]} t abbreviated
by t[s,p]. For example, one crucial rule of our semantics of objects is to evaluate calls to an
object’s method [lj 7→ς(x, y)t, . . .].lj(p) to the body with substituted parameters: t[o/x, p/y],
where o = [lj 7→ς(x, y)t, . . .]. In locally nameless representation, it is expressed by t[o,p].

To abstract a variable, close is defined as a primitive recursive function of type [nat,

fVariable, fVariable, term] ⇒ term. As close corresponds to a method abstraction
we chose the syntax { ←[ , ]} . Its definition uses identical patterns with open; we thus
only show the decisive case for Fvar.

close_Fvar: {k ← [s,p]}(Fvar x) = (if x = s then (Bvar (Self k))

else (if x = p then (Bvar (Param k)) else (Fvar x)))

Similarly to open, most of the time we will close the variable indexed by 0; we thus abbreviate
{0 ←[s,p]} t by σ[s,p] t.

Opening and closing efficiently convert between free and bound variables. Remember,
however, that the coexistence of free and bound variables necessitates to restrict propositions
to terms without “unbound bound variables”: preconditions generally restrict propositions
to locally closed terms.

The predicate lc formalises local closure:

inductive lc :: term ⇒ bool

where
lc_Fvar: lc (Fvar x)

| lc_Call: J lc t; lc a K =⇒ lc (Call t l a)

| lc_Upd: J lc t; finite L; ∀s p. s /∈ L ∧ p /∈ L ∧ s 6= p −→ lc (u[Fvar s,Fvar p])K
=⇒ lc (Upd t l u)

| lc_Obj: J finite L; ∀l∈dom f. ∀s p. s /∈ L ∧ p /∈ L ∧ s 6= p

−→ lc (the(f l)[Fvar s,Fvar p]) K
=⇒ lc (Obj f T)

| lc_Act: lc a −→ lc (Active a)

| lc_ARef: lc (ActRef g)

| lc_FRef: lc (FutRef f)

An explicit substitution operator with syntax [x →s] t replaces a free variable x by a term
s in a term t. The structure of its primitive recursive definition is similar to open and close
but the decisive Fvar case is as follows.

subst_Fvar: [z → u](Fvar x) = (if (z = x) then u else (Fvar x))

Although we use open for a “substitution” in the semantics, the substitution above is better
suited for free variables for example in renaming lemmata.
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6.4.2. Cofinite Quantification

One problem when changing from bound to free variable is the need for fresh variables.
Whenever we have a rule which uses a newly introduced variable name, we need to find a
fresh name. For example, suppose that t is a subterm under a binder. To make it locally
closed, we need to instantiate the top-level bound variable of t: t[s,p], but to keep the
original term t (and close the term later with s and p), we need s and p fresh. Technically,
we can use a function FV collecting the free variables of a term and add the additional premise
x /∈ FV(t) whenever a fresh variable name x is required. This way of formalising can be
described as the “exists-fresh” approach (Aydemir et al., 2008a). Unfortunately, the “exists-
fresh” approach leads to very clumsy proofs: intuitively, we need to prove statements for a
set of free variables differing from the ones given as hypotheses. In recent work by Aydemir
et al. (2008a), a more sophisticated technique called cofinite quantification is introduced
that eases the proofs involving such rules. The basic idea (cf. Section 6.1.2) is to abstract
from sets of free variables FV (t), but instead consider some arbitrary finite set L, i.e.,
assuming a “cofinite set” of variable names. Since L is arbitrary, it can be chosen later as
a convenient set bigger than the set of free variables. Any näıve way using simply locally
nameless representation without using cofinite induction in the semantic definition would
lead to unsolvable proof obligations for some theorems. Thus the semantics of our calculus
in the locally nameless representation is expressed by rules of the form:

Cofinite-update-LN
finite L ∀x y. x6=y ∧ x, y /∈ L −→ ∃t′′.t[x, y] = t′′ ∧ t′ = ς[x, y]t′′ lc o

o.l := t→ς o.l := t′

6.4.3. Semantics and Proofs

When comparing the techniques, two criteria must be considered: how easy it is to write
the formalisation, and how easy and convincing it is to read it. Locally nameless terms are
definitely easier to read as they use named variables instead of de Bruijn indices. However,
in the specification of the syntax and semantics we often encounter some technical overhead
due to the new constructors for named free variables. Moreover, we need to establish the
well-formedness of terms by adding predicates lc to the premises of the reduction rules.
Fortunately, the additional lc condition mainly states that substituted terms correspond to
correct ς-calculus terms. We have seen an example in the previous section when considering
the semantic rule Cofinite-update-LN for the local update on objects.

Let us focus on the reduction inside binders. Specifying that any field can be reduced in
de Bruijn notation leads to the rule:

Obj: Js →ςt; l ∈ dom fK=⇒ Obj (f (l 7→ s)) T→ςObj (f (l 7→ t)) T

This is very similar to the paper version. The locally nameless version is less straight-
forward: we need cofinite quantification:

Obj: J l ∈ dom f; finite L; lc (Obj f T);

∀s p. s/∈L ∧ p/∈L ∧ s6=p−→ ∃t’’. t[Fvar s,Fvar p] →ς t’’ ∧ t’ = σ[s,p] t’’) K
=⇒ Obj (f(l 7→ t)) T →ς Obj (f(l 7→ t’)) T
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Additional requirements refine what is meant by “reduce under the binder”; in fact the
difficulty is to make the sub-term under the binder locally closed before reducing it, which
somehow refines the intuitive notion of (correct) reduction under binders.

The essential relations of the calculus, reduction and typing, are not more readable in the
locally nameless versions compared to the de Bruijn incarnations. In both formalisations, the
introduction of syntactic sugar can bring some rules very close to a paper version. However,
the more restrictive reduction relation for locally nameless variables is closer to the version
found on paper, as it does not apply to terms with dangling indices.

Concerning proofs, the notable benefit comes from the explicit distinction between the
variable types, which can improve readability and ease reasoning for many lemmata, espe-
cially the basic lemmata and confluence proofs, more cases being proved automatically.

Concerning typing, the locally nameless formalisation improves the understandability of
proofs but at the price of rather technical lemmata for renaming. We are not able to observe
a major improvement in the complexity of the major proofs but, for the most part, there is
no notable burden either. The proof principles are similar for either variable representation.

6.4.4. Overall Comparison with the de Bruijn Approach

The clear advantage of the locally nameless formalisation is the handling of free variables.
The de Bruijn version did not allow reasoning about free variables for a very simple reason:
it is not possible to express free variables. More precisely, unbound de Bruijn indices could
sometimes simulate free variables, but such a solution is unsatisfactory because the intent of
a free variable is different from a dangling index. Moreover, the explicit distinction between
bound and free variables eases the handling of either kind of variable and enhances the
readability of proofs and formalisations.

Cofinite quantification, freshness, and renaming are the major reasons for additional and
technical proofs in the locally nameless representation, and all of these items are required
for the reasoning about named free variables. The locally nameless rules are more complex
than their de Bruijn counterparts because the locally nameless representation introduces
new concepts and is precise about well-formedness and closure. This initial formal overhead
is paid back by a natural notation in theorems and by improvement for interactive proofs.
Overall, the locally nameless technique allows a more precise formalisation, avoids proving
obscure lemmata on substitution and lifting, and leads to a more natural notation for terms
but at the price of additional non-trivial requirements in semantic and typing rules, and
additional non-trivial concepts.

6.5. An Experience in the Formalisation of Calculi and Semantics

The entire development takes around 14000 lines of code for each of the two representa-
tions. Among those lines less than 10% are necessary for the formalisation of the languages
and the properties, and most of the development concerns the proof of the properties and
the intermediate lemmata. The development time is difficult to evaluate but is above one
man-year for the two formalisations.

The most difficult and crucial step is certainly the definition of the right model for the
calculus, its semantics, but also for the additional constructs used in intermediate lemmata.
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Of course, the structure and difficulties of the proofs are highly dependent on the basic
structures on which the formalisation relies.

Even if the length and form of the proof is not optimal, the development for formalising
such a theory is really consequent; and it becomes difficult to keep a proof minimal and well-
structured when it grows to several thousands of lines in length. Handling simplification
steps in such a complex and rich theory becomes tricky. Additionally, making modular proofs
for subject reduction and equivalent properties is difficult in a theorem prover because useful
lemmata are tightly coupled with the numerous and complex hypotheses involved by the
case analysis; for example it is difficult to specify a lemma that will be used in case the
request rule has been applied, because such a lemma would have numerous and complex
hypotheses.

However, globally, we consider that the formalisation of ASPfun is of reasonable size, and
provides a set of constructs relatively easy to use. We think this formalisation can be used
efficiently to prove new properties on distributed object languages.

7. Discussion and Alternative Semantics

Reduction contexts. There are different ways of specifying at which point(s) of a term a
reduction can occur. A convenient and classical technique for this is to use reduction context
(a term with a hole). Reduction occurs at the position of the hole, and the definition of
the contexts define the possible reduction points. The most operational semantics generally
reduce innermost terms and implement a call by value for method parameters. The most
general semantics, like the classical semantics of λ-calculus, allows reduction to occur at any
point in the term.

Because it gives the most general results, we chose the general semantics where any
part of the terms can be reduced. In particular, we allow the reduction to occur inside
binders. This is similar to the general semantics of ς-calculus, as in Definition 6.2.1 of
(Abadi and Cardelli, 1996) or even example page 62 showing a reduction inside binders.
Then for their “operational semantics”, in Section 6.2.4 of (Abadi and Cardelli, 1996),
Abadi and Cardelli (1996) use reduction contexts that do not allow reduction inside binders:
F ::= • |F.li(t) |F.li := ς(x, y) s |Active(F ). In ASPfun, those reduction contexts would avoid
using noFV requirement in the reductions. We chose to specify the most general semantics
– allowing reduction inside binders.

Properties and proofs presented in this paper are also valid for reduction contexts (replac-
ing E by F ), and reformulating our results for reduction contexts would be trivial. Indeed
all the properties are trivially easier to verify for the reduction with F except progress (all
of them are more general for E than for F ). But, progress was proved using exactly this
reduction context. Consequently progress is also verified by the reduction context semantics.

Communicating non-closed terms. In our semantics we prevented terms with free variables
to be communicated in order to avoid variables to escape their binders. Technically, all
communication rules require the communicated term s to verify “noFV(s)”. To avoid this
requirement in the semantics an alternative semantics could be provided to communicate
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free variables without entailing shared memory; but this is out of the scope of this paper,
see (Schmitt, 2002) for example.

Optimising parallel evaluation. A few drawbacks could be found in the semantics given
in this paper if a real programming language was to be implemented exactly as specified
in Table 2. Indeed a straightforward implementation of our semantics could allow some
inefficient execution paths especially because too many communications or computations
could occur if no optimisation is done.

First, it seems unreasonable to create in practise as many threads as there are requests
in an active object: using a thread pool seems a much better implementation choice.

Additionally, the most critical inefficient point is the possibility to return a future par-
tially evaluated, i.e., the result for a request partially computed. This can result in the
computation being done twice which is, in general, not efficient. However, the properties
proved here allow enough variation on the semantics to make it usable in practise. In our
critical example, it is possible to restrict the reply rule to only return completely evaluated
futures. Then, if one picks a request, there is no more any guarantee that it can evolve, but
the absence of cycle ensures that some request in the configuration can always be reduced.
Some intermediate reductions have to be added to guarantee the progress property: we first
reduce the request(s) calculating the future value before returning the future and progress-
ing. Finally, returning only completely evaluated futures leads to a more efficient semantics,
and still ensures a (weaker) form of progress.

8. Related Works and Positioning

Distributed Languages: Actors and Objects

Actors (Hewitt et al., 1973) is a widely used paradigm for programming distributed
autonomous entities and their interactions by messages. They are rather functional entities
but their behaviour can be changed dynamically giving them a state.

Agents and Artifacts with simpA, concentrating on the higher-level of modelling concur-
rent agent based systems, also feature a calculus (Ricci et al., 2011). Although the formali-
sation is based on Featherweight Java, the agent concept of Agents and Artifacts resembles
ASPfun’s activities but the calculus has no type system and proofs. ASPfun framework may
be used to provide formal support to this work.

Obliq (Cardelli, 1995) is based on the ς-calculus; it expresses both parallelism and mo-
bility. It relies on threads communicating with a shared memory. Like in ASPfun, calling a
method on a remote object leads to a remote execution but this execution is performed by the
original thread. Øjeblik, e.g., (Briais and Nestmann, 2002), a subset of Obliq, equally differs
from ASPfun by thread execution. The authors investigate safety of surrogation meaning
that objects should behave the same independent of migration.

The distributed object calculus by Jeffrey (2000) is based on a concurrent object calculus
by Gordon et al. (1997) extended with explicit locations. The main objective is to avoid
configurations where one object at one location is being accessed by another. A type system
enforces these restrictions. Because migrating objects can carry remote calls, in order to
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ensure subject-reduction, Jeffrey introduces serialisable objects, which are non-imperative.
Compared to our calculus the most decisive difference is that activities abstract away the
notion of location and are remotely accessible thanks to a request queue. The concept of
futures somehow explicitly supports mobility and serialisation.

Futures

Futures have been studied several times in the programming languages literature origi-
nally appearing in Multilisp (Halstead, Jr., 1985) and ABCL (Yonezawa et al., 1987).

λ(fut) is a concurrent lambda calculus with futures. It features non determinism primi-
tives (cells and handles). Niehren et al. (2006) define a semantics for this calculus and two
type systems. They use futures with explicit creation point in the context of λ-calculus;
much in the same spirit as in Multilisp. Alice (Niehren et al., 2007) is an ML-like language
that can be considered as an implementation of λ(fut).

In (de Boer et al., 2007), the authors provide a language with futures that features
“uniform multi-active objects”: roughly each method invocation is asynchronous because
each object is active. Thus, compared to ASPfun, the calculus has no Active primitive.
Each object has several current threads, but only one is active at each moment. Each object
holding a future may block waiting for the future, or it may use the await construct to release
the current thread and activate a new one. In this framework, futures are also explicit: a
get operation retrieves their value. The authors also provide an invariant specification
framework for proving properties. This work also formalises the Creol language (Johnsen
et al., 2006). Indeed, Creol has exactly the same notion of uniform multi-active objects, and
of a single thread active at a time. Johnsen et al. (2006) also provide a type system specifying
behavioural interfaces, and a semantics for Creol in Maude. Also note that Abrahám et al.
(2009) provide a model of Creol’s multi-active objects with futures but they focus on the
definition of interfaces and on a safety property on promises (a generalisation of futures).
To summarize, the main difference between Creol and ASPfun are that future creation and
access is explicit in Creol, all Creol objects are active, and the functional nature of ASPfun.

ASP (Caromel and Henrio, 2005) is an imperative distributed object calculus; it is based
on the ςimp-calculus (Abadi and Cardelli, 1996). It features asynchronous method calls and
transparent futures. No instruction deals directly with futures. Activities in ASP are mono-
threaded: one request is served at each moment, and a primitive can be used to select the
request to serve. Some confluence properties for ASP have been studied in (Caromel and
Henrio, 2005; Caromel et al., 2004). ProActive (Caromel et al., 2006) is an implementation
of the ASP calculus.

Dedecker et al. (2006) suggest a communication model, called AmbientTalk, based on
an actor-like language and adapted to loosely coupled small devices communicating over an
ad-hoc network. The communication model is quite similar to the ASP calculus but with
queues for message sending, handlers invoked asynchronously, and automatic asynchronous
calls on futures. The resulting programming model is slightly different from ASP and ASPfun

because there is no blocking synchronisation in AmbientTalk. In AmbientTalk, the flow of
control might be difficult to understand for complex applications, because one can never
ensure that a future has been returned at a precise point of the program. AmbientTalk
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should be dead-lock free but, unfortunately, as no formalisation of the language has been
proposed to our knowledge, this has not been formally proved. Our framework could be
relatively easily adapted to prove the absence of dead-locks in AmbientTalk by transferring
our progress property.

Concerning analysis of programs with futures, Cansado et al. (2008) proposed an auto-
matic way to generate a model of a component application with futures in order to verify
its correct behaviour. Note that the objective of our paper is quite different because we
aim here at proving generic properties of languages that handle futures whereas Cansado
et al. (2008) aim at proving properties of a specific application. However, generic properties
proved in ASPfun for the programming model are directly used in the verification approach
to know that the specified model fits the reality but also to optimise verification procedures
by using generic properties of the language.

Mechanical Proofs For Calculi

One of the greatest contributions of this work is the formalisation of the ASPfun lan-
guage, its semantics, and type system plus the proof of safety and progress in an interactive
theorem prover. We believe that in the discipline of language development the application
of mechanical verification is particularly relevant even if it comes at the price of intensive
and partly cumbersome work. Related works from the viewpoint of mechanised language
verification is the formalisation of the imperative ς-calculus in the theorem prover Coq most
prominently using a co-inductive definition and higher order abstract syntax by Ciaffaglione
et al. (2007). However, they do not consider concurrency or distribution. With respect to
concurrency, the formalisation of the π-calculus in Isabelle/HOL by Roeckl and Hirschkoff
(2003) is related. There, higher order abstract syntax is employed. More recent work by
Bengtson and Parrow (2007) uses nominal techniques in Isabelle/HOL for the formalisation
of the π-calculus. The authors prove many standard results concerning bisimulation and
congruence of the calculus. In recent work, they formalised their own generalisation of the
π-calculus, the Psi-calculus (Bengtson et al., 2009). Concerning mechanisation of calculi,
their solution to model binding sequences for nominal datatypes in Isabelle/HOL is interest-
ing because it also shows that generalisations of the nominal package in Isabelle/HOL are
necessary and possible (see Section 6.1.2). Unfortunately the design of the π-calculus is too
far from ASPfun for this formalisation to be directly useful in our case. Moreover, no objects
are introduced neither in the π-calculus nor in its extensions. Ridge (2007) works on a for-
malisation of concurrent OCaml in Isabelle/HOL. However, he concentrates on concurrency
using abstraction techniques to improve automation of concrete algorithm proofs and has
not formalised objects at all. The originality of our approach lies in the formalisation of
distribution concerns and futures.

Positioning

Futures have been formalised in several settings generally functional-based (Niehren
et al., 2006; de Boer et al., 2007; Flanagan and Felleisen, 1999); those developments rely on
explicit creation of futures by thread creation primitives in a concurrent setting. They are
getting more and more used in real life languages; for example, explicitly created futures

39



are also featured by the java.util.concurrency library. ASP’s (Caromel et al., 2004;
Caromel and Henrio, 2005) particularities are: distribution, absence of shared memory, and
transparent futures, i.e., futures created transparently upon a remote method invocation.

This paper presented a distributed evaluation of the functional ς-calculus using transpar-
ent futures and active objects. It can also be seen as a study of the functional fragment of
ASP. That is why we consider this calculus as complementary to the preceding ones. Futures
can be passed around between different locations in a much transparent way; thanks to its
functional nature and its type-system, this calculus ensures progress. Progress for active
objects means that evaluation cannot lead to dead-locks. ASPfun is called “functional” be-
cause objects are immutable. In ASPfun, activities are organised in an actor-like manner.
That is why we consider our language as a form of “functional actors” or “functional active
objects”. The main novelty of ASPfun is that it is simple enough to allow for a mechanised
specification and mechanised proofs of typing properties.

In comparison to the first presentation of the ASPfun-calculus at the FOCLASA-workshop
(Henrio and Kammüller, 2009), the current paper better illustrates the semantics and fur-
ther demonstrates the use of the functional update to personalise services (see Section 3).
Moreover, this paper gives a precise description of the Isabelle/HOL formalisation comparing
the two different approaches we have implemented for binders (see Section 6). In partic-
ular, the second implementation using the concept of locally nameless representation with
its recent concept of cofinite induction is an independent contribution. We consider that
the major contribution of this paper is the mechanical formalisation, and the precise defini-
tion of formalisation tools that can be re-used to mechanically formalise other properties or
languages.

Beyond the scope of this paper is a recent prototypical implementation of the ASPfun-
calculus in the concurrent language Erlang (Fleck and Kammüller, 2010) intended for the
practical exploration of privacy concerns in distributed systems. In a second conceptual
paper we show that the functional update of ASPfun can be used to implement a hid-
ing mechanism for private data enabling the enforcement of an information flow property
(Kammüller, 2010).

9. Conclusion

We presented a functional calculus for communicating objects and its type system. This
work can be seen both as a distributed version of ς-calculus and as an investigation on
the functional fragment of ASP. The particular impact of this work relies on the fact that
it has been entirely formalised and proved in the Isabelle theorem prover. The functional
nature of ASPfun should make it influence directly stateless distributed systems like skeleton
programming (Cole, 2004). Our approach could be extended to study frameworks where
most of the services are stateless, and the state-full operations can be isolated (access to
a database), e.g., workflows and SOA. Our formalisation in a theorem prover should also
impact other developments in the domain of semantics for distributed languages.
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A calculus of communicating objects

The calculus is an extension of ς-calculus with only the minimal concepts for defining
active objects and futures. Syntactically, the extension only requires one new primitive:
Active creates a new activity from a term. The absence of side-effects and the guarantee
of progress make the program easy to reason about and easy to parallelise. ASPfun is
distributed in the same sense as ASP: it enables parallel evaluation of activities while being
oblivious about the concrete locations in which the execution of these activities takes place.
The actual deployment is not part of the programming language and should be provided by
an application deployer rather than by the application programmer.

Well-formed terms and absence of cycle

We proved that ASPfun semantics is correct: no reference to non-existing activities or
futures can be created by the reduction. Also, no cycle of future or activity references can
be created. Thus, starting from an initial configuration, we always reach a well-formed
configuration without cycle.

A type system for functional active objects

We extended the simple type system for ς-calculus: Active returns an object of the same
type as its parameter; activities are typed like their active objects; and futures are typed
like the request calculating their value. The type system ensures progress and preservation.
Preservation states that the types are not changed during execution. Progress states that a
program does not get stuck. In ASPfun, this is due to the following facts:

• The type system plus the subject reduction property ensure that all method calls will
access an existing method.

• Well-formedness ensures that all accessed activities and futures exist.

• Absence of cycles prevents cycles of mutually waiting synchronisations and infinite
loops of replies.

• As partially evaluated futures can be replied, any chosen request can be reduced.

• All operations are defined for both local and active objects avoiding “syntactical”
dead-locks like updating a method of an activity.

• Terms under evaluation contexts can be safely communicated between activities.

A Formalisation in Isabelle/HOL. The formalisation adds the necessary quality assurance
to a language development where rules and properties are intricate while the need for ver-
ification is as worthwhile as imperative. The formalisation is relatively long. It involves
the definition of several constructs commonly encountered in the semantics for distributed
languages (reduction contexts, references, typing, futures, . . . ) that we think can be re-used
in other developments, at least in the domain of semantics for distributed languages.
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In practice we provided two formalisations: one uses de Bruijn indices, and the other
uses locally nameless representation for representing variables. Those two approaches have
been precisely compared.

The overall framework provides, to our mind, a good basis for the formal study of
distributed object languages with futures.

Can we find a better progress property?

Let us analyse the limitations of the progress property.
First, though a reduction is possible, the reduced term can sometimes be identical to the

original one. The absence of cycle ensures that such a situation can only occur in the local
semantics. This is inherent to the ς-calculus and is out of the scope of this paper.

Second, the reduction can occur in any chosen request but not at any chosen place.
Indeed, we can only ensure that points specified in restricted reduction contexts can be
reduced. (See the definition of F in Section 6.2). This is a consequence of the fact that
objects can only be sent between activities if they do not have free variables that otherwise
would escape their binder. This restriction seems both natural and safe.

Future Works. Additional properties could be proved on ASPfun. First of all a proof of
confluence for ASPfun could be a good followup to this work. ASPfun is also a good basis
to study security or fault-tolerance concerns. More generally, we think that our mecha-
nised formalisation is a good tool to prove properties on communication optimisations and
protocols in the context of languages for distributed systems. We also aim at providing
a formalisation of an imperative distributed object calculus, like ASP, and further mixing
functional and imperative activities.
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