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An Explainable Al-based Intrusion Detection System for DNS over
HTTPS (DoH) Attacks

Tahmina Zebin, Shahadate Rezvy, Yuan Luo

Abstract—Over the past few years, Domain Name Service
(DNS) remained a prime target for hackers as it enables them
to gain first entry into networks and gain access to data for
exfiltration. Although the DNS over HTTPS (DoH) protocol
has desirable properties for internet users such as privacy and
security, it also causes a problem in that network administrators
are prevented from detecting suspicious network traffic generated
by malware and malicious tools. To support their efforts in
maintaining a secure network, in this paper, we have implemented
an explainable AI solution using a novel machine learning
framework. We have used the publicly available CIRA-CIC-
DoHBrw-2020 dataset for developing an accurate solution to
detect and classify the DNS over HTTPS attacks. Our proposed
balanced and stacked Random Forest achieved very high pre-
cision (99.91%), recall (99.92%) and F1 score (99.91%) for the
classification task at hand. Using explainable AI methods, we have
additionally highlighted the underlying feature contributions in
an attempt to provide transparent and explainable results from
the model.

Index Terms—Secure Computing, Machine Learning, Intru-
sion Detection System, Explainable Al

I. INTRODUCTION

OMAIN Name System (DNS) traffic is crucial for

many existing security systems. Since an application
must translate a domain name before a connection can be
established, DNS traffic can identify many observable security
threats in the network traffic. As per the EfficientIP and IDC
2021 Global DNS Threat Report, around 87% of the surveyed
organizations have experienced DNS attacks in 2021 which is
8% more than the statistics in 2020 [1]. With the pandemic in
recent times, a rapidly increasing number of people remotely
working and using various cloud services on a daily basis, an
increasing amount of cyber-attacks are disrupting the online
services. The impact and cost of attacks remain extremely high
and it affects company finances but also brand image and data
confidentiality. Organizations have suffered more diverse types
of attacks than ever before, showing that cyber-criminals are
using all the tools at their disposal to exploit both the DNS
protocol and misconfigurations.

Previously, DNS queries were made in plaintext, from an
app to a DNS server, using the DNS settings of the local
operating system received from its network provider, usually
an Internet Service Provider (ISP). In recent times, a new
protocol DNS over HTTPS (DoH) has been created to improve
users’ privacy on the internet. DoH changes this paradigm.
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DoH encrypts DNS queries, which are disguised as regular
HTTPS traffic, hence the DNS-over-HTTPS name. These DoH
queries are sent to special DoH-capable DNS servers (called
DoH resolvers), which resolve the DNS query inside a DoH
request and reply to the user, also in an encrypted manner.
DoH can be used instead of traditional DNS for domain name
translation with encryption as a benefit [2].

The companies and organizations that have DoH-capable
products have been advertising DoH as a way to prevent ISPs
from tracking users’ web traffic and as a way to bypass cen-
sorship in oppressive countries. The readability of translated
domain names in the traffic is exploited in application firewalls
to check security policies, and intrusion detection systems to
detect suspicious connections. Therefore, this paper focuses
on the possibilities of encrypted traffic analysis, especially for
the purpose of accurate detection of DoH attacks.

The contribution of this paper consists of the following:

o We have implemented one of the very first explainable Al
solutions to provide accurate detection and classification
of the DNS over HTTPS attacks. We have analyzed DoH
communication traffic samples or captured packets. By
analysis of traffic samples, we identified easy to interpret
DoH traffic features from the CIRA-CIC-DoHBrw-2020
dataset that can provide insight for developing efficient
methods of DoH traffic classification and Intrusion detec-
tion systems.

o We have proposed a Balanced Stacked Random forest
classifier for this task. Our choice of methods and algo-
rithms ensured high accuracy while maintaining trans-
parency on how the model is governing the decision-
making process. The improvements in performance us-
ing the proposed data split and sub-model development
mainly was reflected by the three-fold reduction in train-
ing time because of the parallel nature of the sub-models.
We have also obtained slightly improved precision and
recall performance from the proposed implementation
when compared to a generic random forest model trained
without a balanced sub-division.

« We have also deployed our model and generated a tailored
dashboard for visualization using state-of-the-art explain-
able Al methods to make the solution transparent to the
human user of the system.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background literature in the recent
development in DoH attack detection methods used in recent
years, we introduced the concept of explainable Al in this
section. We then introduced our dataset and the associated pre-
processing stages in Section III. Section IV provides details on
the workflow, model architecture and parameter settings for the
implemented model. The performance of the developed model
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for attack classification is evaluated in Section V. We presented
the explanations from the model using a model dashboard we
have deployed from the task in Section VI. Finally, the paper
is concluded along with ideas for future work in the very last
section.

II. BACKGROUND LITERATURE

This section discusses the literature relevant for DoH de-
tection or the detection of malicious use of DoH. The related
work is divided into multiple parts. It starts with the broad
scope of detecting malicious DNS traffic in general including
available datasets and the learning techniques used for the
classification of encrypted data. The literature then gradually
narrows down to the recent related work that has specifically
used the dataset similar to this research for the detection of
malicious DoH traffic. We then presented some background
concepts necessary for the use of explainable Al in DoH
intrusion detection systems.

A. DoH attack detection : Learning Techniques

Numerous organizations have less active monitoring plans
in terms of security checking on DNS as it is not used for
Data transfer, compared to other protocols like Web activity
where attacks often take place. A malicious DNS attack can
aim to exploit security vulnerabilities on the server that runs
the DNS services and extract valuable data such as passwords,
usernames, and other personal information. Since most of
the Internet’s traffic is encrypted and served by large content
delivery networks, in many cases, domain name systems are
the only clear text sign about the specific service being
accessed. DNS Tunneling is a method of cyber-attack that
encodes the data of other programs or protocols in DNS
queries and responses. DNS tunnels, established between the
controlled host and master server disguised as the authoritative
domain name server, can be used as a secret data commu-
nication channel for malicious activities. Cybercriminals use
multiple tunnelling techniques such as FTP-DNS tunnelling,
HTTP-DNS tunnelling, HTTPS-DNS tunnelling, and POP3-
DNS tunnelling to hide their identity[3]. Owing to the ready
evasion of the DNS traffic to bypass the network security
mechanism, DNS tunnelling can cause severe damage. DNS
tunnelling often includes data payloads that can be added to
an attacked DNS server and used to control a remote server
and applications.

Several earlier methods proposed to detect malicious DNS
traffic include Network and DNS Traffic Analysis [4], [5],
Domain name blacklisting, and Detailing of Web Page Content
by the visual platform to protect top-level domain name servers
against DDoS attacks [6]. Aiello et al.[4] combined principal
component analysis (PCA) and mutual information (MI) to
calculate a novel metric as the identification index, based
on several statistical features. However, they found that the
different circumstances of DNS server size or the traffic encap-
sulated in DNS tunnelling would cause diverse manifestations
of the value. Hence, the threshold could only be determined
based on the condition of the non-overlapping of the MI value
between legitimate and malicious traffic, which is affected by

many environmental factors. In other words, it indicates the
poor flexibility and generality of this method. Other works
have focused on predicting the validity of information coming
from the DNS and do not take into account that DNS data for
the malicious activity have statistical, temporal and payload
related differences, so the results obtained were less effective
(61, [71.

Some very recent research focused on analysing and de-
tecting malicious and encrypted DNS traffic using various
machine learning techniques. The research in [9] focused on
the primary domain as a filter to classify the DNS traffic rather
than the queries. The features have been extracted from sub-
domains of multiple groups. The author used supervised ma-
chine learning for examining DNS traffic and filtering benign
and malicious domains. However, this approach has a limita-
tion of the inability to detect malicious queries in the main
domain. In which the sub-domain is not enough for detecting
the other types of attacks. Banadaki et al. [10] examined the
dataset called CIRA-CIC-DoHBrw-2020[8] using several ML
algorithms such as (Xgboost, Gradient Boosting, and Light
Gradient Boosting algorithms). However, the preprocessing
and optimization phase were unclear. Ramakrishnan et. al.[11]
propose a NN (Neural Network) based IDS that can quickly
respond to attacks by analyzing low-level network details. The
proposed scheme is quite limited in terms of the number of
features used and low accuracy where it averagely reports
90% accuracy. Jafar et al.[12] explored eight ML methods
including Logistic Regression, Stochastic Gradient Descent,
Decision tree and Random forest to name a few. The authors
reported accuracy value only along with the computational
time required to train the model, but there is again no detail
on class-wise accuracy and other evaluation matrices. Keeping
explainability in mind, we have not included a few deep
learning model development available for this dataset. In this
research, we are proposing one of the very first explainable Al
solutions to provide an accurate solution to detect and classify
the DNS over HTTPS attacks. In the next subsection, we will
discuss the introductory explainable Al methods used in this
research for DoH attack detection.

B. Explainable Al for DoH attack detection

Despite the growing popularity of machine learning models
in cyber-security applications (e.g., an intrusion detection
system (IDS)), most of these models are perceived as a black-
box. The eXplainable Artificial Intelligence (XAI) has become
increasingly important to interpret the machine learning mod-
els to enhance trust management by allowing human experts to
understand the underlying data and to understand the impact
of the malicious data to detect any intrusion in the system. The
previous studies focused more on the accuracy of the various
classification algorithms for trust in IDS. They do not often
provide insights into their behaviour and reasoning provided
by the sophisticated algorithm. Therefore, in this paper, we
have addressed the XAl concept to enhance trust management
by exploring the decision tree model in the area of IDS.

Over the last few years, there has been significant progress
on Explainable Al. The pursuit of converting these black-
box models into transparent and interpretable algorithms has
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Fig. 1. The technical framework of DNS tunnels for generating Malicious DoH traffic.

TABLE 1
TRAFFIC TYPES CAPTURED IN CIRA-CIC-DOHBRW-2020 DATASET [8]

Traffic Type Instances Description of the Attack
captured

Non-DoH 889,809 Traffic generated by accessing a website that uses HTTPS protocol is captured. In
order to capture ample traffic to balance the dataset, thousands of websites from
Alexa domain are browsed.

Benign-DoH 19,746 Benign DoH is non-malicious DoH traffic generated using Mozilla Firefox and
Google Chrome web browsers.

Malicious-DoH 249,553 DNS tunneling tools such as dns2tcp, DNSCat2, and Iodine are used to generate

malicious DoH traffic. These tools create tunnels of encrypted data. Therefore, DNS
queries are sent using TLS-encrypted HTTPS requests to special DoH servers.

gained traction in both academia, industry and other users
of Al and machine learning models. While many packages
and methodologies have developed in recent years, one of
the most popular methods today, SHAP (SHapley Additive
exPlanations) is a game theory-based approach to explain the
output of any ML model [13]. It connects optimal credit
allocation with local explanations using the classic Shapley
values from game theory and their related extensions. SHAP
does a great job in decoding the strength of the influence of the
input variables in the predictions with intuitive and engaging
visualizations across various aspects of model explainability.
SHAP values calculate the feature importance by comparing
what a model predicts with and without the feature. However,
since the order in which a model sees features can affect its
predictions, this is done in every possible order, so that the
features are fairly compared.

At the time of writing this paper, there was not much
explainable Al literature available for DoH attack detection
and classification. Hence we will present a thorough discussion
and the explanations from our proposed model using a model
dashboard in Section VI in this paper.

III. DATASET DESCRIPTION AND PRE-PROCESSING

For experimenting, we have used the publicly available
CIRA-CIC-DoHBrw-2020 dataset[8] from the Canadian In-

stitute for Cybersecurity (CIC). In this dataset, a two-layered
approach is used to capture benign and malicious DoH traffic
along with non-DoH traffic. In the first layer, the Non-DoH
activity is generated by accessing different web servers. The
DoH traffic has been collected using Several DNS tunnelling
tools have been used such as DNSCat2, lodine, and dns2tcp
[12], [14]. In layer 2 data collection, Malicious-DoH traffic is
generated using the above-mentioned tunnelling tools, where
these tools sent TLS-encrypted HTTPS data in DNS queries
to DoH servers (Adguard, Cloudflare, Google, Quad9). Fig. 1
shows the technical framework of DNS tunnels for generating
Malicious DoH traffic. To capture Benign-DoH traffic, Several
web browsers such as Chrome, Firefox, and safari have been
used to generate Benign-DoH in the same mechanism as in
scenario Non-DoH.

A. Exploratory Feature Analysis

The features of this dataset can be divided into multiple
broad categories. Flow Statistics is one of the categories
containing features such as the duration of the flow and the
number of packets sent or received in that flow. The category
Flow Bytes contains features describing the number of total
bytes sent and/or received. Furthermore, there is a Packet
Length category containing statistical features about the packet
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Fig. 2. Density plots displaying the difference in a number of features for the three types of traffic measurements available in the dataset. (a) the number of
bytes sent or received for malicious DoH is clearly higher compared to non-DoH and benign-DoH as visible from the FlowBytesReceived feature distribution
(b) The mean and (c) variance of incoming packets. DoH flows have more consistent packet lengths, resulting in a smaller variance compared to non-DoH

shown by the narrow distribution plot in red.

lengths such as mean value or standard deviation. There are
similar statistical features calculated for the Packet Time and
Inter-Packet Delay categories.

To learn the differences in characteristics of DoH and non-
DoH, thorough feature analysis is performed in this section.
The value distribution for the feature is plotted using a Kernel
Density Estimation (KDE) plot. Fig. 2 shows the class-wise
density distribution for Flow Bytes Received, packet length
mean and variance features. A KDE plot is similar to a
histogram, however, the KDE plot shows the estimation of the
probability density function of a variable instead of discrete
bins. The duration of a network flow is a feature clearly
distinguishing malicious DoH from non-DoH, with DoH flows
having comparatively longer duration. The non-DoH web
traffic network flows have a short duration since the whole
web page is fetched in only a few seconds. We noticed some
differences in the Flow byte measurements as well, the number
of bytes sent or received for malicious DoH is clearly higher
compared to non-DoH and benign-DoH (shown in the KDE
plot in Fig. 2(a) and (b). Additionally, we have looked into the
mean and variance of incoming packets (shown in the KDE
plot in Fig. 2(b) and (c)). In general, DoH flows have more
consistent packet lengths, resulting in a smaller variance com-
pared to non-DoH shown by the narrow distribution plot in red
in Fig. 2(c) . The outgoing packets showed similar properties.
An interesting difference between benign and malicious DoH
is that the variance for malicious DoH is always relatively high
due to alternating small and larger packets. To be noted, we
have done a thorough analysis of the 29 features available in
CIRA-CIC-DoHBrw-2020 dataset [14], but we only presented
some relatable insights from some features in this paper.

B. Dataset resampling and Train-test Split

To deal with the class imbalance in the training data, we
have used a one-sided selection with the synthetic Minor-
ity Oversampling Technique (SMOTE) technique [15] while
preparing our training data. The dataset has been split into
training and testing sets of 90%, and 10% respectively. As
can be seen from the system overview diagram in Fig. 3,
we have created three balanced splits from the 90% training
data to feed three independent sub-models. We have used
three different splits of Non-DoH data while sharing the same
malicious samples over various divisions. We applied SMOTE
up-sampling of the benign group to avoid any evident bias

from the majority groups available in the dataset. From the
numbers available in Table I, the initial ratio of Non-DOH,
benign-DOH and Malicious-DoH are 45:12:1 in the dataset,
After balanced splitting and up-sampling of the benign group
we had three splits of the training set with the ratio being
15:12:12 in each subset. With this sub-division, we had to
use less amount of synthetic data from the minority group
per sub-model. The improvements in performance using the
proposed data split and sub-model development mainly were
reflected by the three-fold reduction in training time because
of the parallel nature of the sub-models. The training sets were
further split into 10 folds to allow 10 fold cross-validation. To
be noted, all of our experiments were performed on a Linux
machine with an Intel Core i9 processor, 64 GB RAM and an
NVIDIA RTX GPU.

C. Pre-processing: Scaling and Normalization

We performed a min-max normalization on the numerical
feature vectors using equation (1).
pnorm _ (.13 — mm) ] (1)
(maz — min)
We have utilized the MinMaxScaler implementation from the
sklearn preprocessing library. The fit and transform method
is used on the training set. Once column specific minimum
and maximum values are measured by the method, the test
data is transformed using the existing measurement from the
training data. After this operation, all numeric feature values
are ranged between 0 and 1.

D. Hyperparameter Tuning and Cross-Validation

For finding the optimal hyperparameters, resulting in the
best classification, we used the GridsearchCV function that is
used for the exhaustive search. In the search, different models
are trained covering all (manually) pre-configured parameter
values. Each model is tested after training and the search
was done with 10- fold cross-validation so that the selected
parameters are less susceptible to outliers.

IV. MODEL IMPLEMENTATION

In this study, we attempted to identify DoH traffic generated
by various malicious DNS tunnel tools. The payload of DoH
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Algorithm 1: Balanced Stacked Random Forest
training algorithm

Input: Training dataset X = {x1, 2, ..., Zm }, Number of
features 29, & Training Labels
Pre-processing layer;
Scale and normalize using equation(1);
XM = (x — min)/(maz — min);
2 Balanced data sub-set creation from training data and
application of SMOTE;
Classifier;
3 Initialize parameters at the supervised layer: Random forest,
variable tree depth, 10 tree estimators;
4 Sub-model training for speeding up the calculation;
5 Calculate the labels for each sample x,, of the training
dataset X;
6 Perform ten-fold cross-validation supervised manner to for
model optimization and parameter tuning;
Stacked Ensemble layer;
7 Stacking sub-classification model to provide ensemble output
X
XAI Output generation;
Application of TreeExplainer from SHAP library to generate
contribution plot and contribution table; end;
Output: Class labels, Probability, Contribution plot,
Contribution table

-

®

traffic is encrypted; thus, its content cannot be accessed. There-
fore, we have used the statistical features of the packets to
analyze the traffic in detail. For the detection and classification
task, we employed two main functional stages in our proposed
model. A balanced-training layer with multiple sub-models
and a stacked classifier for classification based on DNS over
HTTPS intrusion features. We describe our intuition for using
these components in the system development in the coming
subsections. To be noted, we have also trained Decision Tree,
Random Forest, and Xgboost Classifiers for the purpose of
mode performance comparison before settling to our final
Balanced and Stacked Random Forest Classifiers.

A. Base-Classifiers: Random Forests

For our model implementation, we are using a popular
ensemble classifier called the Random Forest [16] which
operates by constructing multiple decision tree models at the
training time. It is one of the most accurate supervised learning
methods in recent times. Each decision tree in a Random
Forest represents one class of observations that are being
considered. Decision trees are constructed during the learning
process with the training data. Random Forests mainly rely
upon two parameters to control their growth: numTrees, the
number of decision trees to be built and numFeatures, the
number of random subset of features to assess at each tree
node[17]. In our design, numTrees = 10 and numFeatures =
28. Each of the 10 decision trees is constructed in a top-
down manner starting with a root node by selecting a set of
N observations of size n at random with replacement from
the training dataset and selecting the most significant features
of these samples as the tree nodes. At each node a, the m
number of features is selected at random from 28 features to
grow the tree and the most significant feature that provides the
best binary split on that node is selected among all according
to an objective function. Feature significance is generally
estimated using the Gini index[18]. To classify a new sample,
the features values of the samples are tested with each of the
decision trees present in the random forest. Each tree gives a
classification score or “vote” and the class with the most votes
is selected as the class to which the sample belongs. We have
used the RandomForestClassifier from the sklearn.ensemble
module in python for training the models [19].

B. Balanced and Stacked Classifier for Higher Predictive
Performance

The simplest form of stacking can be described as an
ensemble learning technique where the predictions of multiple
classifiers are used as new features to train a meta-classifier
[20]. The functional stages of the proposed algorithm is
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outlined in Fig. 3. The workflow is demonstrating the stacking
scheme we used to train and implement our multi-class traffic
detection model. The meta-classifier of our choice is a logistic
regression model. All the sub-models in this diagram are
Random forest models with numTrees=10, and has a max-
imum branch depth of 5 in the individual decision trees to
keep the computation fast enough during the prediction stage.
For the implementation, we have used the StackingClassifier
from the mlxtend.classifier module [21]. A pseudo-code of the
algorithm development process is summarized in algorithm I.

V. MODEL EVALUATION

Once the model development was done, we evaluated how
well the model is performing on test data from various classes.
For that, we have reported the scores such as accuracy,
precision, recall, Area Under the ROC Curve (AUC), and F1-
scores since these are directly comparable with other studies.
Additionally, confusion matrices are reported to give insights
into the strong and weak points of the classifiers, it shows
which classes are often misclassified. A definition of the
evaluation matrices is provided in the next sub-section.

A. Model evaluation matrices

If True Positive (Tp) is the number of attacks classified
rightly as attack; True Negative (77v) is the number of normal
events rightly classified normal; False Positive (Fp) is the
number of normal events misclassified as attacks and False
Negative (Fv) is the number of attacks misclassified as
normal, we can define accuracy, recall, precision and F1 values
of a model using the following equations.

e Accuracy: It is an indicator of the total number of correct

predictions provided by the model and defined as follows:

Tp+ TN
Tp+Tn+Fp+Fy'
e Recall, precision and F1 Score: Three of the most com-

monly used performance measures with F1 score being
the harmonic mean of recall and precision measures are
defined as follows:

Accuracy =

2

Tp
Recall or True positive rate = ———. 3
p Tp + Fy 3
.. Tp
Precision = ———. 4
Tp + Fp @
Fl Score — 2 x Precision * Recall 5)

Precision+Recall

B. Confusion Matrix

We presented the confusion matrix plot in Fig. 4, for our
model when evaluated with the test data set. The columns
correspond to the predicted class and the rows correspond
to the true class (Actual Class). The diagonal cells in the
confusion matrix correspond to observations that are correctly
classified (I’ and T'v’s). The off-diagonal cells correspond
to incorrectly classified observations (Fp and Fiy’s). Both the

number of observations and the percentage of the total number
of observations are shown side by side. For the proposed
balanced stacked random forest classifier, class-wise model
performance for train and test set is shown in confusion
matrices (a) and (b) respectively. As can be seen in Fig. 4
(b), the proposed stacked random forest was able to detect
24949 malicious out of 24955, with only six misclassified
instances where the model predicted those as NonDoH. The
major source of misclassification was observed in the model
for benign instances classified as NonDoH, these errors are
caused due to the test instance benign similar in nature to
NonDoH in terms of models top predictive features such as
duration, packet length etc, However, these errors are less
damaging to the system because of their benign nature.

Predicted

—— >
. Benign Malicious NonDoH Benign Malicious NonDoH 3

i 4
Benign| 96.9% 0.0% 02% Benign| 15946 9 1816 17771
. Malicious 9 224496 93| 224598
Malicious 0.1% 100.0 % 0.0%
NonDoH 503 10 800316 800829
NonDoH 31% 0.0% 99.8%
3 16458 224515 802225 1043198

(a) Train set confusion matrix: results are obtained in a 10-fold cross-validation process.

- Benign Malicious NonDoH Benign Malicious NonDoH 5
2 Benign 97.3%  0.0% 02% Benignf 1762 LR 1978
@
2 -

Mall 0 24949 6 24955
8 | Malicious 0.0% 1000% 0.0% aliclous

NonDoH 50 2 88928 88980

NonDoH 27 % 0.0% 99.8%
b3 1832 24952 89126 115910

(b) Test set confusion matrix: class-wise accuracy presented as percentage of
predicted (left), number of instances (right).

Fig. 4. Class-wise model performance for train and test set is shown in
confusion matrices (a) and (b) respectively. For each case, class-wise accuracy
is shown as a percentage of predicted on the left and a count of instances was
shown on the right.

C. Performance comparison

Along with our final Balanced Stacked Random Forest
Classifier, we have additionally trained a Decision Tree, a
Random Forest and an Xgboost (Gradient Boosting) Classifier
for comparison purposes. As shown in Table II, the proposed
classifier results are better than the generic ensemble learning
framework such as the Gradient Boosting and The RF classifier
with SMOTE balancing. Compared to the other classifiers, the
created ensemble framework misclassified a few samples from
NonDoH and benign class but, there is only six wrong classi-
fications in malicious class. And a very low misclassification
for the malicious class would be desirable in this scenario.
In the table, we have also compared the AUC score for the
various classifiers we have developed for the task.

From the results shown in Fig. 4 and Table II, we noticed
our system can identify malicious DNS traffic with more than
99% accuracy. The model can distinguish DoH traffic from
normal HTTPS network traffic 99.9% of the time and the
class-wise accuracy of Benign, Malicious and Non-DoH traffic
on the test set was found to be 97.3%, 99.99% and 99.8%
respectively. In Table II, we have reported the AUC, F1-score,
precision and recall value from the models we have devel-
oped along with some comparable results from the literature
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TABLE II
MODEL ACCURACY COMPARISON IN TERMS OF AREA UNDER THE CURVE (AUC), ACCURACY, PRECISION, RECALL AND F1-SCORE FOR NONDOH,
BENIGN AND MALICIOUS DOH TRAFFIC CLASSIFICATION

Model

AUC Accuracy F1 Precision  Recall

Models we developed:

Decision Tree (Tree Depth=10, SMOTE balanced)
Gradient Boosting(XGB, SMOTE balanced)

Random Forest (number of Trees=10, SMOTE balanced)
Proposed model (Balanced Stacked random forest)

0.8617 0.9770 0.8197 0.9658 0.7120
0.9986 0.9927 0.9843 0.9956 0.9732
0.9999 0.9998 0.9987 0.9989 0.9985
0.9999 0.9998 0.9991 0.9991 0.9992

Comparison with literature:
Decision Tree[10]

Gradient Boosting(XGB)[10]
Random Forest [10]

Decision Tree[12]

Random Forest [12]

Decision Tree[22]

Gradient Boosting(XGB) [22]
Random Forest [22]

0.998 0.998 0.998 0.998 0.999

1 0.999 1 1 1
1 0.998 0.997 0.999 0.998
- 0.999715 - - -
- 0.999802 - - -
- 0.993 - 0.992 0.993
- 0.951 - 0.957 0.951
- 99.5 - 99.4 99.6

on the same dataset. There were several machine learning
methods presented in [10]-[12], [22] using various tree-based
algorithms, ensemble classifiers, other neural networks and
deep learning algorithms on the CIRA-CIC-DoHBrw-2020
dataset. Though the experimental method in this literature
is not directly comparable, we have listed the results from
similar methods reported in these for comparison purposes
in the lower half of Table II. Banadaki et al. [10] reported
several ML algorithms with very high accuracy, precision and
recall scores. However, this research did not include any detail
on the preprocessing stages, or model parameters to repeat
the experiments. They also used 4000 observations in the
test set, which is very small compared to the dataset itself
and the set may not have enough variation and looks overfit-
ted. Ahakonye et al.[22] proposed a time-efficient Ensemble
Learning (EL) model reporting an accuracy of 99.5% with
reduced processing time. Ramakrishnan et. al.[11] proposed a
NN (Neural Network) based IDS that can quickly respond to
attacks by analyzing low-level network details. The proposed
scheme is quite limited in terms of the number of features used
and low accuracy where it averagely reports 90% accuracy.
Jafar et al.[12] explored eight ML methods including Logistic
Regression, Stochastic Gradient Descent, Decision tree and
Random forest to name a few. This research reported accuracy
value only along with the computational time required to train
the model. We have included the results from the tree-based
methods in our comparison table which reported a 99.9%
accuracy, but there is again no detail on class-wise accuracy
and other evaluation matrices. Compared to this result, our
proposed Balanced and stacked random forest model was able
to distinguish DoH traffic from normal HTTPS network traffic
99.9% of the time and the class-wise accuracy of Benign,
Malicious and Non-DoH traffic on the test set was found to
be 97.3%, 99.9% and 99.8% respectively. The improvements
in performance using the proposed data split and sub-model
development mainly was reflected by the three-fold reduction
in training time because of the parallel nature of the sub-
models. We have also obtained slightly improved precision and
recall performance from the proposed implementation when
compared to a generic random forest model trained without
a balanced sub-division. Our proposed balanced and stacked

random forest achieved slightly higher precision (99.91%),
recall(99.92%) and F1 score (99.91%) than the other candidate
models we developed, which is desirable for the task at hand.
For the purpose of comparison, the Xgboost model had a
precision value of 99.56%), a recall value of 97.322% and
an F1-score of 98.43% in this scenario.

V1. EXPLAINING THE DECISIONS USING XAI

In this section, we highlighted our use of XAI methods to
visualize the decision-making process of our proposed model.
We used the methods available from the SHAP (SHapley Ad-
ditive exPlanations) library to look into the model’s decision-
making process, expected impact from various features and
potential biases. It helped us characterize model accuracy,
transparency and outcomes to be validated by a human user.

A. Feature importance plots

As DoH can be used for benign and malicious purposes,
so if DoH is detected, the analysis of the features that are
helping to detect DoH traffic would be highly beneficial. For
our use case, Fig. 5 is highlighting a SHAP summary plot
from the proposed model that is giving us the global feature
importance values obtained from the training data. On the X-
axis of the summary plot, we have the average impact ( mean
absolute SHAP values) of a particular feature on the decision
making of a particular sample. SHAP values show how much a
given feature changed our prediction (compared to if we made
that prediction at some baseline value of that feature). On Y-
axis the features are presented according to their importance
globally from the entire training set. From our visualization,
we found out that the duration of a network flow and the packet
length related features were the features that helped the model
heavily to distinguish the malicious DoH from Non-DoH. The
packet length related features were found to be most powerful
in separating the benign DoH traffic from the dataset.

B. Dependence plots and Interaction plots

It is also possible to create local summary plots displaying
positive SHAP-values indicative of a feature supporting the
decision confidence. Negative SHAP-values are indicative
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1. Duration

2. PacketLengthMode

Category

Feature

3. PacketTimeVariance

Flow Statistics

Duration

4. PacketLengthCoefficentofvariation
5. PacketLengthVariance

Number of flow bytes sent
Number of flow bytes received

6. PacketLengthMean Flow Bytes Rate of flow bytes sent
7. FlowBytesSent Rate of flow bytes received
8. PacketTimeMean Mean Packet Length
9. ResponseTimeTimeMedian Median Packet Length
10. FlowBytesReceived Mode Packet Length
11. PacketLengthStandardDeviation Pack Variance of Packet Length
§ acket Length —
12. PacketLengthMedian Standard Deviation of Packet Length
13. PacketTimeMedian Coefficient of Variation of Packet Length
14. PacketLengthSkewFromMode Skew from median Packet Length
15. PacketTimeCoeffidentofVariation Skew from mode Packet Length
16. PacketLengthSkewFromMedian Mean Packet Time
17. PacketTimeSkewFromMode Median Packet Time
18. FlowReceivedRate Mode Packet Time
19. PacketTimeSkewFromMedian Packet Time Variance of Packet Time

20. PacketTimeStandardDeviation
21. PacketTimeMode
22. FlowSentRate

3. imeTimeC

Standard Deviation of Packet Time
Coefficient of Variation of Packet Time
Skew from median Packet Time

Skew from mode Packet Time

24. ResponseTimeTimeVariance
25. imeTi i

26. ResponseTimeTimeMean

27. ResponseTimeTimeMode

28. ResponseTimeTimeSkew FromMode

29. ResponseTimeTimeStandardDeviation
0 0.02 0.04 0.06

Inter-Packet delay

Mean Request/response time difference

Median Request/response time difference

Mode Request/response time difference

Variance of Request/response time difference

Standard Deviation of Request/response time difference
Coefficient of Variation of Request/response time difference
Skew from median Request/response time difference

Skew from mode Request/response time difference

Average Impact on predicted label
(mean absolute SHAP value)

Fig. 5. SHAP summary plot from the model that is giving us a birds-eye view of feature importance. From our analysis, we found the duration of a DoH
traffic is the most important predictor of whether the traffic is malicious or not, followed by some features related to packet length and variance in packet
time. Our list of features included computed flow statistics, flow bytes, packet length, packet time and Inter-packet delay features as shown on right.

Duration
2
% T

0.2 ‘

SHAP value
=2

-0.1

0 50 100 150
(a) Duration

FlowBytesReceived

o

SHAP value
o

-0.02

-0.04

-0.06

0 2000 4000 6000
(b) FlowBytesSent

Fig. 6. (a) SHAP dependence plot for Duration as a feature. On y-axis we have the SHAP Values for each observation. This plot holds the duration of all
the observations of the test set to monitor the impact of duration in the model’s classification. Each dot represents a row of the data. We can infer from this
diagram that the model is using a duration threshold above 40 seconds to determine malicious DoH traffic reflected by the positive SHAP Values above this
range. (b) Interaction plot of FlowBytesSent and FlowBytesReceived. An interesting grouping is revealed on the upper left cluster in this plot when bytes
received sent in some instances is bigger than bytes originally sent indicating the suspicious or probable malicious nature of these grouped instances.

of the feature negatively impacting the decision confidence.
SHAP dependence plots provide useful insight if we want to
delve into the impact of a single feature in terms of the samples
the model has processed.

In Fig. 6, we have plotted the Duration and FlowByteSent
feature for all the samples in the test set, where each dot
represents a row of the data. The horizontal location is the
actual value from the dataset, and the vertical location shows
the SHAP impact value for that prediction. Higher the SHAP
value, the bigger the impact of the feature for one observation
in its decision making. In these diagrams, the malicious traffic
is indicated with positive SHAP values, benign and nonDoH
traffic represented using negative shap values for classification.

In Fig. 6(a) we plotted the duration of all the observations of
the test set to monitor the impact of duration in the model’s
classification. Most of the instances, that were classified as
malicious DoH traffic by the model is having a duration above
40 seconds. In Fig. 6(b) We are showing an interaction plot
of FlowBytesSent with FlowBytesReceived. The interesting
grouping is revealed on the upper left cluster in this plot when
bytes received sent in some instances is bigger than bytes
originally sent indicating the suspicious or probable malicious
nature of the grouped instance.
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Fig. 7. Explaining a malicious test packet. On the top left, the dashboard provides a prediction probability and a pie chart shows the percentages. The label
with the asterisk sign is the label the model outputs as the decision. On the right, we have a contribution table with the value of each feature of the data
sample being processed by the model and their effect value or positive-negative contribution in models decision making. On the bottom left, we have the
feature contribution plot as a waterfall plot, green bars displaying positive contributors and the red bars displaying negative contributors in the decision making

process.
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Reason Effect
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PacketLengthVariance = 468846.35165895056 +19.15%
PacketLengthMean = 742.8472222222222 +15.42%
PacketLengthStandardDeviation = +7.62%
684.7235585686756

PacketLengthMode = 1514.0 -4.06%
FlowBytesSent = 2990.0 +3.97%
PacketLengthCoefficientofVariation = +3.05%
0.9217555616891584

Duration = 0.922116 +235%
FlowBytesReceived = 50495.0 +2.32%
PacketTimeMean = 0.6760061666666666 +2.18%
PacketTimeSkewFromMode = +2.0%
-1.0434037221350383

Other features combined +151%
Final prediction 88.85%

Fig. 8. Explaining a Non-DoH test packet. For this decision, we can see the model had an 86.1% confidence score for Non-DOH based on the feature
averages and the impact the model has seen for various samples during the training phase.

C. Explaining a malicious and a non-DoH test packet

We have deployed the model on an interactive Explainer
Dashboard to test the model functionality in a transparent
manner. Fig. 7 and Fig. 8 included a visualization of a
contribution table and a contribution plot. These help to assess
the contribution of various feature values for an exemplar
malicious DOH traffic and a Non-DOH traffic sample from the
dataset. We have used 29 features to classify DoH traffic in our
model and it is possible to calculate how much each feature
contributed to generating the confidence value of a certain
decision with the help of the dashboard functionalities we have

put together for this. We have added a video demonstration of
the dashboard as supplementary material with this submission.

In Fig. 7, we are demonstrating a detailed explanation of a
malicious test packet by the model. The deployed model dash-
board provides a prediction probability (table and pie chart
on the top left), which is 76.4% for this Malicious instance.
The contribution plot below provides a further breakdown of
which feature contributed positively or negatively in models
decision making for this particular instance. For example, this
test flow has a duration of 120.81 seconds, which is above the
threshold for NonDoH and benign traffic contributed positively
(+14.68%) to models decision for classifying this instance as
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Fig. 9. Identifying the distinction between from various malicious DNS tunnel tools, such as dns2tcp, DNSCat2, and Iodine for (a) ResponseTime-

TimeSkewFromMode and (b) PcketTimeVariance feature.

malicious. The next highest contribution was coming from a
high packet time variance measurement for this case. However,
the packet length mode from the mode for this transaction was
low compared to usual malicious traffic, which affected the
model confidence value negatively by 5.49%.

In Fig. 8, we are showing a similar analysis of a Non-DOH
test packet. Notice the value difference in Duration in both the
decisions and their contribution differences. Additionally, for
this decision, we can see the model had a 3.8% similarity of
malicious traffic in some of the features. It is also possible to
identify the features that impacted the model’s decision that
way. In this instance, the PacketLengthMode value of this
traffic was leaning towards a higher value of the malicious
group than to the Non-DOH group of training samples the
model experienced during training.

D. Identifying the source of attack

The malicious-DoH traffic generated in this research dataset
is coming from various malicious DNS tunnel tools, such
as dns2tcp, dnscat2, and iodine, which can create tunnels of
encrypted data. Therefore, DNS queries are sent via these tools
using TLS-encrypted HTTPS requests to special DoH servers.
In our quest of whether it is possible to sub-classify various
sources of attack, we have included the malicious source tools
with our malicious instances and presented some comparisons
based on the features we are using in our modelling. As
can be seen from the distribution plots in Fig. 9, we noticed
various feature distributions for iodine and dnscat2 are similar
in nature. In Fig. 9 (a) and (b), we are reporting Respon-
seTimeSkewFromMode and PcketTimeVariance feature along
with mean and standard deviation for each source of malicious
DNS traffic. The dns2tcp tools have a seemingly lower stan-
dard deviation for both these parameters. Because of this, our
system identified the source of malicious traffic with 99.2%
accuracy for dns2tcp, the accuracy for iodine and dnscat2
being 92.9% and 91.3 % respectively.

VII. CONCLUSIONS

DoH technology has been developed to provide security
and privacy for Internet users by encrypting the DNS traffic.
However, over the past few years, DNS remained a prime

target for hackers as it enables them to gain first entry into
networks and gain access to data for exfiltration due to network
traffic generated by malware and malicious tools. Although
many studies on encrypted network traffic classification and
DNS tunnel detection have been reported before, as DoH is a
new protocol we need new set of intrusion detection tools. In
this paper, we reported an explainable Al model dashboard
that can detect malicious DoH traffic accurately. To prove
that our system can identify malicious DNS tunnel tools and
evaluate the performance, we have used the publicly available
CIRA-CIC-DoHBrw-2020 dataset. Our proposed model can
distinguish DoH traffic from normal HTTPS network traffic
99.9% of the time and the class-wise accuracy of Benign,
Malicious and Non-DoH traffic on the test set was found to be
97.3%, 99.9% and 99.8% respectively. We have also reported
the AUC, F1-score, precision and recall value from the model.
In comparison to state-of-the-art ensemble models such as
gradient boosting and generic random forest, our proposed
balanced and stacked random forest achieved slightly higher
precision (99.91%), recall(99.92%) and F1 score (99.91%)
which is desirable for the task at hand. Additionally, With
the help of the SHAP values, we have also highlighted the
feature contributions for the underlying classification decision
by the model. We have also discussed the conditions under
which high classification accuracy can be achieved by using
these features. In summary, the proposed method provides an
accurate solution to detect and classify the DNS over HTTPS
attacks.

Our future research will apply the explainable DoH detec-
tion methods for deep neural network-based solutions [23].
Currently, DoH traffic is only distinguished from browser
traffic. However, there might be HTTPS traffic created by more
applications than browsers only, with characteristics more sim-
ilar to DoH traffic. Other types of malicious use of DoH can
also be an interesting topic for exploration. Botnets often use
fast domain fluxing or Domain Generating Algorithms(DGA).
DGAs in botnets might abuse DoH [7], [24]. Future extensions
of the current work can aim to distinguish DGA related DoH
traffic from other HTTPS traffic.
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