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Abstract 35 

Background. Preclinical durability testing of hip replacement implants is standardised by 36 

ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data 37 

obtained from a small sample of normal healthy individuals. It has not been established 38 

whether loading cycles derived from normal healthy individuals are representative of loading 39 

cycles occurring in patients following total hip replacement. 40 

Methods. Hip joint kinematics and hip contact forces derived from multibody modelling of 41 

forces during normal walking were obtained for 15 asymptomatic total hip replacement 42 

patients and compared to 38 normal healthy individuals and to the ISO standard for pre-43 

clinical testing.  44 

Findings. Hip kinematics in the total hip replacement patients were comparable to the ISO 45 

data and the hip contact force in the normal healthy group was also comparable to the ISO 46 

cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were 47 

comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-48 

off.  49 

Interpretation. Although the ISO standard provides a representative kinematic cycle, the 50 

findings call into question whether the hip joint contact forces in the ISO standard are 51 

representative of those occurring in the joint following total hip replacement.  52 

 53 

 54 

  55 



1. Introduction 56 

The term “normal walking” is commonly referred to in hip implant testing, as 57 

simulators generally aim to reproduce the sliding distances and loads encountered in the body 58 

while walking. Walking has been chosen specifically as it is the most common activity where 59 

the bearing surfaces experience high loads and relative motion (sliding distance); both of 60 

these variables directly influence wear (Fisher and Dowson, 1991). The requirements for 61 

preclinical durability testing of total hip replacement (THR) implants are standardised by 62 

ISO-14242-1 (2002) which is intended to provide inputs defining a ‘representative’ cycle of 63 

normal walking in a typical individual. The data for the motion and load defined within the 64 

ISO standard for hip wear simulation was based on a historical inverse dynamics model using 65 

data obtained from normal healthy individuals (Paul, 1967). It is possible however that hip 66 

joint motion and loading patterns in patients following THR may differ from those of normal 67 

healthy individuals as a consequence of altered articulating surfaces and changes in soft 68 

tissues following reconstruction. It has been reported that THR patients exhibited a reduced 69 

gait velocity, a decreased hip mobility (Perron et al., 2000, Madsen et al., 2004) and altered 70 

muscle activity patterns (Long et al., 1993). Age has also been shown to influence the hip 71 

moment and power during gait (DeVita and Hortobagyi, 2000, Chester and Wrigley, 2008). 72 

The extent to which the ISO data are actually ‘representative cycles’ for hip joint loading has 73 

not been evaluated. Furthermore, recent attention placed on stratified approaches to treatment 74 

has highlighted the need to explore variability between groups even within existing standards 75 

(Bloss and Haaga John, 2013). Understanding the current test standard and future studies 76 

designed specifically to enhance future standards developments are likely in turn to improve 77 

pre-clinical testing. 78 

We hypothesized in this exploratory study that the hip joint kinematics and contact 79 

forces of patients following THR may differ from healthy normal controls and from the ISO 80 

standard, with a view to determining whether future work might be of benefit. 81 

 82 

2. Methodology 83 

2.1 Clinical  84 

Ethical approval was obtained in advance of the study from the Leeds West Ethics 85 

Committee. 15 asymptomatic unilateral total hip replacement patients were randomly 86 

selected for detailed motion analysis. Asymptomatic THR cases were defined by: no current 87 



symptoms in the index hip at the time of testing and no clinical indication of limping as 88 

determined by the surgeon, they were >12 months post-operation, were radiologically normal 89 

and had no other history of musculoskeletal disorders. All subjects had undergone hip 90 

replacement using an anterior approach. Although the specific implant used was not recorded 91 

and there was no formal quantification of functional ability, the cohort were representative of 92 

those cases who would be deemed clinically to have a good outcome. 38 normal healthy 93 

individuals from a dataset compiled using the same motion capture protocols were assigned 94 

to a normal cohort. Due to the large age difference between the ISO dataset (mean 19 years) 95 

and the anticipated age of our THR cases, the normal cohort was not actively age matched. 96 

Instead, subjects were targeted to represent normal function but to lie close to an age in which 97 

THR might be considered a surgical option.  98 

 99 

2.1 Gait Analysis 100 

Joint kinematics were recorded using a clinical gait analysis system comprising of an 101 

eight camera passive marker system (Vicon MX ,T40 cameras,150hz, Oxford Metrics, UK) 102 

with force plate data from two Bertec force pates (1000 Hz) (Bertec Corp, OH, USA). A 14 103 

marker plug in gait model was used employing 9mm markers attached to the pelvis, thigh, 104 

shank and foot as well described previously (Holsgaard-Larsen et al., 2014), and the technical 105 

error for this setup within a working volume of 10 x 11 x 2.5 m was calculated as less than 106 

0.2 mm. Following an acclimatisation period, gait data were acquired from three passes along 107 

an 8 metre walkway with clean strikes on the force plates observed. 108 

 109 

2.3 Biomechanical Analysis  110 

Motion capture and ground contact force plate data were imported into a multi-body 111 

dynamics modelling system (AnyBody, version 5.0, AnyBody Technology, Aalborg, 112 

Denmark) utilising inverse dynamics analysis. The musculoskeletal model of the lower 113 

extremity in AnyBody has been previously validated in the literature (Forster, 2004, Manders 114 

et al., 2008) and comprises of a human lower extremity model which includes 340 muscles 115 

and 11 rigid bodies representing talus, foot, shank, patella and thigh for both legs and the 116 

pelvis. The muscle, joint centre and inertial parameters of the lower extremity model in the 117 

AnyBody Repository is based on an anthropometric dataset provided by the University of 118 



Twente (Horsman and Dirk, 2007). The trunk segments were included in this study for 119 

attaching the psoas major muscles, and were constrained to the pelvis.  120 

For this study, simple muscle models without force-length-velocity relationships were 121 

adopted, as force-length-velocity relationships have been shown to have little influence on 122 

the prediction of muscle forces and contact forces of hip joints for normal gait (Anderson and 123 

Pandy, 2001). Model scaling and kinematic optimization were performed based on the 124 

marker trajectories of each file, reflecting individualized parameters for each participant. 125 

Ground reaction force was then applied to the foot segment of the scaled model to perform 126 

inverse dynamics analysis. The problem of muscle redundancy was solved by quadratic 127 

muscle recruitment (Heintz and Gutierrez-Farewik, 2007, Glitsch and Baumann, 1997) which 128 

minimizes the sum of muscle stresses squared. Hip contact force and hip moment for both 129 

legs of each subject were calculated after performing inverse dynamics analysis. 130 

Gait parameters of the normal healthy cohort and the index limb of the THR patients 131 

were compared to the ISO data. The hip joint kinematics and joint loads for the operated and 132 

non-operated sides of THR patients were also compared to explore possible effects of 133 

unilateral THR on the contralateral limb. In the discussion, further comparison is made 134 

between the current results and previous in vivo data derived from instrumented hip 135 

prostheses. All comparisons of joint contact forces represent the total force magnitude and 136 

calculated joint contact forces were normalized to body weight to control for differences in 137 

body weight between subjects.  138 

 139 

2.4 Statistical Analysis  140 

Data are presented as mean values, along with the associated 95% confidence intervals 141 

(CI) for each cohort to show the variation within each cohort. Data sets were temporally 142 

aligned to 101 centiles through spline interpolation in MATLAB (R2013b, MathWorks, 143 

Natick, MA, USA). The means of the normal cohort were obtained by averaging the mean 144 

result of the two limbs for each subject. Because some of the gait data were not normally 145 

distributed, non-parametric statistical tests were used. A Mann-Whitney test was used to 146 

determine whether differences in kinematics and kinetics between cohorts were systematic 147 

and reached statistical significance, and the comparison between operated and non-operated 148 

limbs was conducted through a Wilcoxon test. A significance level p ≤ 0.05 was regarded as 149 

significant throughout. 150 



3. Results 151 

The demographic characteristics of the control and asymptomatic cohorts are described 152 

in Table1. The velocity, cadence and stride length for the asymptomatic THR cohort was 153 

significantly reduced (P < 0.005) compared to normal healthy individuals (Table 2). The 154 

normal healthy individuals had significantly greater angular excursion in the directions of 155 

flexion/extension (P = 5.7E-3) and abduction/adduction (P = 2.2E-5) than the THR cohort 156 

(Table 3). Both groups demonstrated a characteristic peak-trough-peak (F1– F2– F3) pattern in 157 

the hip contact force, however, this was significantly less dynamic in the asymptomatic THR 158 

patients whom exhibited a 22% higher trough (P = 2.9E-3) and 35% lower peak loads at toe-159 

off ( P =1.9E-8) (Figure 1 and Table 3). Our normal cohort exhibited a very similar pattern 160 

and magnitude in kinetics to the ISO data. Using the same modern acquisition methods 161 

resulted in the THR cohort yielding 30% lower loads at toe-off (F3). The differences in peak 162 

load at heel strike (F1) were not significant for these three groups.  163 

Within the asymptomatic THR cohort, there were no significant differences in any of 164 

the kinematic variables or predicted joint loading patterns between the operated and non-165 

operated sides (Figure 2).  166 

Within each cohort, between subject variability was higher (95% CI > 10% of the mean 167 

value) for hip abduction/adduction and internal/external rotation, although there was less 168 

between subject variability (95% CI < 10% of the mean value) in other parameters (Table 3). 169 

For the hip contact force, 95% CI were ~5% of the mean value for the normal healthy 170 

individuals and ~10% of the mean value for the asymptomatic THR cohort on both the 171 

operated and non-operated sides (Figure 1 and Figure 2). 172 

 173 

4. Discussion 174 

In this exploratory study, we hypothesized that the hip joint kinematics and contact 175 

forces of patients following THR may differ from healthy normal controls and from the ISO 176 

standard. Derived from the data by Paul, the ISO standard recommends a maximum load of 177 

3kN, and is based on a 75kg patient and equates to a force of approximately four times body 178 

weight. A twin peak in the force time curves was predicted by the model with the average 179 

peak forces for the normal healthy cohort equalling 3.89 times body weight (mean BW = 180 

72kG). Our data for the normal cohort was similar in shape and magnitude to the ISO 181 

standard (Table 3, Figure 3) which suggests that the traditional inverse dynamics used in the 182 



ISO standard provided a comparable result to the modern acquisition and modelling 183 

techniques utilised in this study. As expected the normal healthy individuals recruited to this 184 

study were significantly older (mean 45 yrs.) than the subjects used in the inverse dynamics-185 

calculated data published by Paul (mean 19 yrs.), and were arguably more representative of a 186 

THR patient although we accept that there was no attempt to match specifically to the THR 187 

cohort. Our normal cohort and THR cohort have similar age and BMI to typical healthy and 188 

THR populations respectively and thus are not closely matched for age and BMI. As reported 189 

by Bennett et al (2008), the difference in age alone would not be expected to account for the 190 

difference in gait kinematics between the normal healthy individuals and THR patients. 191 

However, other studies have reported age-affected alterations in gait parameters (DeVita and 192 

Hortobagyi, 2000, Chester and Wrigley, 2008) and so this warrants consideration. The 193 

mismatch in BMI may also be a reason for the difference in gait parameters between our 194 

normal healthy cohort and THR cohort. Better stratified studies are required in the future to 195 

further characterize the effect of age and BMI, although it was not within the scope of this 196 

study. 197 

The novelty of this study was that the THR cohort consisted of unilateral asymptomatic 198 

THR patients, recruited at a minimum of one year post-operatively and who were carefully 199 

screened to have no other history of musculoskeletal disorders and to represent the typical 200 

THR patient in our regional tertiary referral centre, deemed to have a good clinical outcome. 201 

While the small sample investigated in this study makes the drawing of wide-ranging 202 

conclusions inappropriate, the presence of a systematic difference between our THR group 203 

and both the ISO cycle and the normal group suggest that further exploration of and 204 

development of testing standards might warrant further attention in future. Compared to the 205 

normal healthy individuals, there was evidence of a persisting decreased range of motion and 206 

reduced hip contact force in the THR patients which suggests that there is at least some 207 

residual compromise of function associated with hip arthroplasty even in cases with a 208 

clinically good outcome. This reduced mobility is in agreement with prior kinematic studies 209 

of THR patients in the literature (Loizeau et al., 1995, Bennett et al., 2008, Beaulieu et al., 210 

2010, Madsen et al., 2004).  211 

Contact forces were similar for the operated and non-operated side of the asymptomatic 212 

THR patients (Figure 2). The magnitude of the peak forces at heel-strike and to-off was 213 

similar to those reported by Foucher et al (2008) who reported values of 3.0 and 2.5 times 214 

body weight respectively. The reduced gait dynamics additionally led to a loss in the 215 



restoration of the second peak of force at toe-off perhaps related to diminished hip moment 216 

outputs (Table 3). As synovial joints are nearly frictionless (Mow and Lai, 1980, Jin et al., 217 

1997, Li et al., 2013), the hip moment, which is related to the hip contact force, is generated 218 

mainly to balance ground reaction force and the inertia effect of the moving body segments. 219 

As such, hip moments are influenced by gait velocity, cadence and stride length, parameters 220 

that were all seen to reduce in asymptomatic THR patients. Consequently, the results confirm 221 

that even with carefully selected cohorts of patients exhibiting no other co-morbidities, the 222 

altered dynamic inputs observed in asymptomatic THR patients, as compared with the normal 223 

healthy individuals, lead to a corresponding reduction in hip range of motion and a lower 224 

joint contact force.  225 

In vivo peak hip forces have been reported by several authors over the past 25 years 226 

using specialised instrumented prostheses with values ranging from 2.4 to 4.1 times body 227 

weight recorded during gait (Bergmann et al., 2001, Davy et al., 1988, Kotzar et al., 1991, 228 

Bergmann et al., 1993, Brand et al., 1994, Damm et al., 2013a, Damm et al., 2013b, 229 

Schwachmeyer et al., 2013). Whilst these reports are based on small numbers of patients, 230 

with varying degrees of postoperative recovery, the data provide useful information for 231 

comparison. The peak load predicted in this study was 3.35 times body weight (3.04 to 3.66) 232 

for the operated side which falls in the middle of the in vivo reported data from the literature.  233 

The data published by Bergmann include more additional patient details that may be 234 

used for further comparison (Bergmann et al., 2001). Our asymptomatic THR cohort was 235 

comparable in age and BMI (64.27 yrs., 30.74) to those described by Bergmann (62.17 yrs., 236 

29.05). A comparison of the average hip contact forces for the asymptomatic THR cohort are 237 

made to the in vivo measurements of Bergmann in Figure 3 on the operated side of implanted 238 

THR patients. There is some evidence of a bi-modalism in the four patients in the Bergmann 239 

dataset as some patients (HS, KW) had two distinct peaks of loading and a more dynamic 240 

pattern of gait, similar to our asymptomatic THR cohort, whilst others (PE, IB) had only a 241 

single peak possibly interpreted as being indicative of with poorer function. The strict patient 242 

selection criteria used in the current study allowed the authors to stratify an asymptomatic 243 

THR cohort that screened out poorly functioning patients. When considering the two patients 244 

of Bergmann with better function, our average joint force data was comparable during the 245 

majority of the gait cycle, although was ~20% greater at heel-strike. We acknowledge that 246 

direct comparison to existing datasets is difficult without the additional consideration of 247 



clinical data such as the involvement of multiple joints, contralateral THR or other functional 248 

compromise such as limb length inequality. 249 

Although a surrogate only for direct measurement of joint forces, laboratory collection 250 

of kinematics and forces combined with multi-body dynamics facilitates the use of larger 251 

cohorts without the need for a specialised implant and the associated ethical challenges 252 

involved in instrumented joints. One weakness of the modelling approach, as exemplified in 253 

the current study, is that the individual patient geometry was derived by scaling a default 254 

patient model. Studies have been conducted investigating factors such as patient specific 255 

correction for hip centre, muscle architecture and muscle activation to refine multi-body 256 

dynamics solution. The effect on the resulting modelling has been widely discussed (Besier et 257 

al., 2003, Carbone et al., 2012) and we acknowledge that without controlling for these factors 258 

the current preliminary data must be interpreted with caution. Stansfield et al (2003) and 259 

Heller et al (2001) have compared the prediction of joint contact forces for small cohorts 260 

using multi-body dynamics against forces derived from direct measurement using 261 

instrumented prostheses for validation. These studies have shown that while multi-body 262 

dynamics provides an appropriate means of parametric analysis, it generally overestimates 263 

the peak joint contact forces by ~10%, due to the lack of a realistic muscle wrapping path 264 

around the hip joint within the model (Bergmann et al., 1993, Stansfield et al., 2003, Heller et 265 

al., 2001). While the current study set out only to explore tentatively the possibility that THR 266 

results in variance in joint loadings from the cycles applied in the ISO standard, any future 267 

evaluation should try to address such shortcomings. 268 

For our THR cohort, who walk more slowly than healthy controls and have a higher 269 

BMI (BMI 27.7 to 33.8) than both the normal cohort and the general population, skin 270 

movement artefact may also be considered as important, although skin movement artefacts 271 

have been shown to be least sensitive to flexion/extension motions at angles seen in walking 272 

(Lu and O’Connor, 1999). In our study, flexion angle contributed the most to hip moment and 273 

the resultant contact force.  274 

Our results suggest that the asymptomatic THR patients exhibited a similar hip range of 275 

motion but a different loading pattern when compared to the ISO standard, while the normal 276 

healthy individuals exhibited a similar loading pattern to that used in the ISO standard. The 277 

asymptomatic THR patients appeared to walk less dynamically, with significantly lower 278 

second peak contact forces and a significantly greater stance phase load. Whilst the THR 279 

patients examined in the study had reduced peak loads, the greater stance phase loads 280 



observed when combined with slower walking speeds will result in longer joint loading 281 

periods that may have a negative influence on bearing lubrication and subsequent wear. 282 

Additionally, many total hip replacement patients have concomitant multiple joint 283 

involvement or other functional compromises that will likely alter the kinetics and subsequent 284 

joint contact forces of the hip (Budenberg et al., 2012). Given the recent emphasis on 285 

stratified approaches to heath care interventions, these data support the argument for further 286 

work which might lead to better representation of the systematic variability of real-world in 287 

vivo conditions.  288 

In conclusion, the hip contact force during gait in our sample of normal healthy 289 

individuals compared well with the ISO loading cycle, while the joint contact forces in the 290 

asymptomatic THR patients showed some differences from those used in the ISO standard. 291 

These preliminary data suggest that further work is warranted to explore whether THR 292 

patients more generally might differ from the ISO standard cycle, and also that future studies 293 

could benefit pre-clinical testing by exploring stratification according to differences in 294 

loading cycles more systematically. 295 
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List of Figures  

Figure 1. Mean joint contact forces ± 95% CI for the operated side of asymptomatic THR 

patients (THR-O) and normal healthy individuals (Normal), along with the ISO data. The 

loading pattern in ISO exhibited similar pattern and magnitude to the normal cohort but 

significantly differed from the THR cohort, with more dynamic pattern and higher 

magnitude, particularly on F3. 

Figure 2. Mean joint contact forces ± 95% CI for asymptomatic THR patients for the 

operated (-O) and non-operated (NO-) sides. Both sides of THR patients exhibited similar 

patterns and magnitude of hip contact force. 

Figure 3. Mean joint contact force for the operated side of THR patients (THR-O, black line) 

and results of Bergmann for patients with instrumented THR prostheses (coloured lines) 

during normal walking (Bergmann et al., 2001). The predicted hip contact force for the 

operated side of THR patients was similar to patient HS and KW, but different from patient 

PE and IB in the results of Bergmann. 
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Table 1. Mean (95% CI) for gender, age and BMI in the normal cohort and asymptomatic THR 

cohort. 

Table 2. Mean (95% CI) of gait velocity, cadence and stride length in the normal cohort and 

asymptomatic THR cohort. Values in these results were reduced for the THR cohort, compared to the 

normal cohort. 

Table 3. Mean (95% CI) for hip contact force, hip moment, and kinematics (range of motion) for the 

ISO standard, the normal control cohort and asymptomatic THR cohort for the operated side. 

  



Table 1 Mean (95% CI) for gender, age and BMI in the control cohort and asymptomatic THR 

cohort. 

Cohorts Male / Female Age (years) BMI (kg/m2) 

Normal  19 / 19 44.97 (40.92 to 49.03) 24.72 (23.84 to 25.61) 

THR  11 / 4 64.27 (58.59 to 69.95) 30.74 (27.72 to 33.77) 

 



Table 2. Mean (95% CI) of gait velocity, cadence and stride length in the normal cohort and 

asymptomatic THR cohort. Values in these results were reduced for the THR cohort, compared to the 

normal cohort.  

 Velocity (m/s) Cadence (steps/min) Stride length (m) 

Normal  1.44 (1.39 to 1.50) 121 (119 to 124) 1.43 (1.39 to 1.47) 

THR-O 

1.09 (1.01 to 1.18) 108 (104 to 112) 

1.22 (1.13 to 1.32) 

THR-NO 1.23 (1.13 to 1.32) 

 

 



Table 3. Mean (95% CI) for hip contact force, hip moment, and kinematics (range of motion) for the 

ISO standard, the normal control cohort and asymptomatic THR cohort for the operated side. 

 ISO Normal THR-O 

F1 (/ BW) 3.4 
3.42 

(3.30 to 3.55) 
3.27  

(2.94 to 3.61) 

F2 (/ BW) 1.7 
1.33 

(1.24 to 1.42) 
1.62  

(1.47 to 1.77) 

F3 (/ BW) 3.4 
3.67 

(3.46 to 3.89) 
2.37  

(2.11 to 2.63) 

Moment at F1 (/ BW×Ht) N/A 
0.0612 (0.0584 to 

0.0641) 
0.0646  

(0.0569 to 0.0724) 

Moment at F2 (/ BW×Ht) N/A 
0.0201 (0.0183 to 

0.0218) 
0.0282 (0.0245 to 

0.0318) 

Moment at F3 (/ BW×Ht) N/A 
0.0525 (0.0500 to 

0.0550) 
0.0379 (0.0344 to 

0.0415) 

Flexion/extension (
o
) 43 

48.6  
(47.1 to 50.2) 

41.2  
(37.52 to 44.9) 

Abduction/adduction (
o
) 12 

15.7  
(14.4 to 17.0) 

10.5  
(8.9 to 12.1) 

Internal/external rotation 
(
o
) 

11 
17.1  

(15.4 to 18.8) 
19.5  

(15.0 to 24.0) 

Note: Peak contact forces occur at slightly different times in the cycle for different individuals and 

hence the average normalised data in the Figures (averaged at the same time interval) is subtly 

different in magnitude to the average peak force in Table 3 that were taken at the time point of 

maximum force. 


