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A Provenance Task Abstraction Framework

Christian Bors, John Wenskovitch, Michelle Dowling, Simon Attfield, Leilani Battle, Alex Endert,
Olga Kulyk, and Robert S. Laramee

Abstract—Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be
captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current
approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task
abstraction framework that consists of a three stage approach, composed of (1) initializing a provenance task hierarchy, (2) parsing the
provenance hierarchy by using an abstraction mapping mechanism, and (3) leveraging the task hierarchy in an analytical tool.
Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the
framework. A use case describes exemplifies our abstraction framework, demonstrating how context can influence the provenance
hierarchy to support analysis. The paper concludes with an agenda, raising and discussing challenges that need to be considered for

successfully implementing such a framework.

Index Terms—Provenance, Task Abstraction, Provenance Hierarchy, Visual Analytics, Framework, Conceptual Model, Sensemaking.

1 INTRODUCTION

ISUAL analytics tools support exploration and reason-
Ving over relatively large datasets using visual repre-
sentations of data for rapid, incremental interaction. With
an emphasis on enabling analytical reasoning, Visual An-
alytics places the user in the loop of analysis. Within the
field, there has been increasing interest in the idea of
recording both data exploration and accompanied human
reasoning. Referred to as insight provenance [1] or analytic
provenance [2], such information presents opportunities for
presenting interaction suggestions to the analyst, retrospec-
tively auditing the quality and coverage of existing analyses,
tracing the origins of insights and assumptions, supporting
collaboration between analysts, or simply providing an an-
alyst with a record as a source of reflection and planning.

Gotz and Zhou [1] argue that scalable approaches to
representing complex analyses are likely to involve the
automated capture of low-level interaction histories. How-
ever, processing such extensive and detailed histories into
hierarchical representations from which analysts might de-
rive meaning presents a further step. In considering this
problem, they point out that activities can be characterized
at multiple levels of granularity, and hence they frame the
problem as one of inferring (semantically richer) higher-
level tasks from large numbers of lower-level actions, i.e.
a problem of task abstraction. For such abstraction to be
automated, one must hypothesize a mechanism by which
low-level operations or actions can be inferentially mapped
to higher-level intents.

In this paper, we propose our vision for how this
problem could be addressed in the future. Our proposed
approach involves analyzing low-level events into higher-
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level actions and activities. We posit that by considering
provenance and the nature of task abstraction more gener-
ally, analytical systems can better model and leverage inter-
action provenance. In Section 3, we describe our proposed
framework, beginning with assumptions or constraints on
what we see as good solution. These include the idea that
high-level actions can be realized in multiple ways, and that
the role of low-level actions depends on the context of those
actions. As a result, mapping using a-priori task hierarchies
would be overly simplistic. We propose what we refer to as
an Abstraction Mapping Mechanism (AMM) to enable ad-
hoc parsing of interaction streams into abstract tasks and
inferring upcoming actions.

We present the approach as a three-stage framework:
a) Initializing — developing a mapping mechanism (rules or
model); b) Parsing — applying the mechanism to a given in-
teraction stream to form an interpretation; and, c) Leveraging
— applying the resulting interpretation in some useful way.
The proposed framework design supports variability allow-
ing the integration of context (e.g., in the form of external-
ized domain knowledge) and iterative improvement. When
parsing and leveraging the framework in a live scenario,
users could be prompted if the recommended actions were
actually useful, and feedback could contribute in changes
of AMM task probabilities. In online hierarchy parsing
and leveraging scenarios, users might be prompted if the
recommended actions were actually useful, and feedback
could contribute in changes of AMM task probabilities.
We conclude by motivating an agenda that points out the
shortcomings of current approaches towards the develop-
ment of such a framework, elaborating research needed to
accomplish it.

In summary, we make the following contributions:

o We further clarify and define the problem of inferring
the users reasoning process as a hierarchy of the user’s
data analysis tasks and sub-tasks.

o We propose a conceptual framework for inferring the
user’s data analysis tasks from log data and relevant
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metadata, involving three stages: initializing, parsing
and leveraging.

o We provide concrete examples demonstrating how our
proposed framework could be developed using existing
techniques, connecting our ideas to related problems in
other research areas (e.g., natural language processing).
The proposed framework utilizes context, variability,
and iterative refinement to more appropriately map the
reasoning process.

o We discuss opportunities to advance visual and interac-
tive analytics research with our proposed framework.

2 BACKGROUND
2.1 Task Abstraction

Within the visualization literature, the notion of “task ab-
straction” is often discussed in the context of taxonomies
of task descriptions which might be generalizable and yet
specific enough to support the analysis of user activity
and design [3]. At the heart of task abstraction is the idea
that low-level operations can be grouped into sets that can
themselves be usefully considered as unified, purposeful
units of action. These units of action may then be grouped
into still larger units of action and so on. Hence, any given
coherent sequence of operations can be described in terms
of an abstraction hierarchy in which higher-level actions
supervene over lower-level action. Implicit in this is the idea
that coherent user-activity can be analyzed at multiple levels
of granularity, yet can also be decomposed into means (i.e.
“how”) and aggregated into motivations (i.e. “why”).

The idea of task embedding has a long history in er-
gonomics and HCI. Possibly the best known example ap-
pears in Hierarchical Task Analysis (HTA), which according
to Stanton [4] was first described by Annett et al [5]. HTA
uses the idea of task embedding to underpin an approach to
task analysis that organizes clusters of ordered activity into
hierarchically-structured models of goals and sub-goals.
Lower-level sub-goals are expansions of higher ones, with
goal statements augmented with plans to specify sub-goal
order and conditions. The uses of HTAs range from the
design of interfaces, operating procedures, and training, to
the analysis of workload and manning levels [4].

Task abstraction is also a central concept in the Ab-
straction Hierarchy, which forms part of Cognitive Work
Analysis (CWA) [6]. CWA is a framework for modeling com-
plex socio-technical systems, emphasizing the integration
of technical functions with human cognitive capabilities to
support the design of interfaces, communication systems,
training teams, and management systems.

CWA prescribes a series of analysis and modeling steps,
each with its own modeling conventions, in which a socio-
technical design problem is described in progressively finer
detail. This description progresses from an explanation of
the work domain as a whole to an analysis of individual
competencies and decision making. The Abstraction Hier-
archy is a multi-level representation framework combining
both physical and functional models of a cognitive worksys-
tem, at the top level is Functional Purpose. Below this are
Abstract Functions, a decomposition from the system to the
sub-system level. Following this are further decompositions
to Generalized Functions, then Physical Functions (states of

individual components), and finally Physical Form, describ-
ing the appearance, condition, and location of the compo-
nents [7]. Aside from the final layer, each level represents a
purpose which is realized by the layer below and explained
by the layer above. One interesting departure from the
conventions of HTA is that in the Abstraction Hierarchy,
any functions can be linked to multiple explanatory or
supporting functions.

Similar analyses have been described within the visu-
alization literature. For example, to better understand how
analysts decompose analysis goals into tasks, Lam et al. [8]
designed a representation (in this case, a framework) of a
goals-to-task decomposition, based on a review of visualiza-
tion design papers [9]. However, current provenance-based
analyses focus on extracting only the data needed to achieve
very specific goals. For example, Lam et al. intentionally
focus on higher-level goals and highly-focused tasks, leav-
ing out other information such as individual interactions. In
contrast, Brown et al. [10] focus on low-level interaction pat-
terns in their provenance analysis, and ignore hierarchical
structure and higher-level tasks. Battle et al. [11] consider
the relationship between goals and interaction sequences
in the context of panning and zooming interactions. Due
to the difficulty of inferring tasks, the instrumentation of
provenance in visual analytics applications often concerns
only sub-tasks of analysis.

2.2 Provenance

Ragan et al. [12] characterized various types of provenance
used in visualization and data analysis, as well as their
application for analysis purposes. They distinguished be-
tween Data, Visualization, Interaction, Insight, and Ratio-
nale Provenance, as a way of delineating different types
of provenance arising from the use of analytic systems. In
computational workflows, there is some history of recording
provenance information. Davidson and Freire [13], for ex-
ample, argued for storing and leveraging provenance infor-
mation from different sources, including information about
where it was generated and what type of provenance it is. In
considering the recovery of the reasoning information from
provenance interaction, Dou et al. [14] argued that in highly
interactive systems, interactions alone lacked the context
of the visual representations present to infer underlying
reasoning.

Herschel et al. [15] presented a survey to identify what
types of provenance are captured and for what purpose.
However, they did not to address the issue of how mul-
tiple types of provenance can be combined to determine
dependencies of individual tasks that generate or utilize
provenance. Andrienko et al. [16] suggested methods for
conducting model externalization, including provenance
collection among others. While they acknowledged differ-
ent types of provenance, they also argued that knowledge
derived through annotation only represents a fraction of
the intent and mental model of the user. They described
the difficulties of externalizing the entire mental model and
motivated the automated construction of such knowledge
models. Further, they identified the need for distinguishing
between building, evaluating, developing, and reflecting on
the model, with formal measures of both the effectiveness
of the model and user judgments.
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3 A TASK ABSTRACTION FRAMEWORK

Like any (more or less) coherent and purposeful activ-
ity, visual analysis can be described as multiple, hierar-
chically connected levels of description. However, current
approaches for capturing provenance information tend to
focus only descriptions with limited depth. Using a single
organizational structure that represents the full hierarchy of
an analysis session, including the high-level goals, the in-
termediate tasks, and the individual interactions, is helpful
for describing an analysis in a more complete yet compre-
hensible way. We refer to this structure as a task hierarchy.
Referring back to work noted in Section 2.1, having direct
access to this task hierarchy for a series of analysis sessions
could have provided direct access to the goals and tasks of
interest to Lam et al. [8], the sequences of interactions of
interest to Brown et al. [10], and the relationships between
the two sought by Battle et al. [11]. In this section, we
present such a task abstraction framework. We argue that
this framework can aid system designers in understanding
how user intent is inferred and how provenance can be
extracted from the structure, ultimately enabling systems to
understand and support users in their tasks. Having direct
access to such an underlying task hierarchy would be of
great use to the visualization community.
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Fig. 1. Provenance can be recorded in different types [12] and at dif-
ferent levels of granularity [1], The dependencies between the different
granularities can be mapped into a hierarchical structure.

A Hierarchical Provenance Structure

Provenance data can take on many forms characterized by
both modality and resolution. For example, provenance can
be recorded in the form of a log file. A low-cost, low-
resolution version may record user input events or screen
captures at predetermined time intervals in text format,
while other approaches require integrating provenance cap-
ture directly into the analytical system. Regardless of the
method used to record and archive provenance data, this
data must be abstracted in order to make it both accessible
and manageable to users and designers.

Provenance can be recorded at various levels of abstrac-
tion, whereby higher-level provenance can be inferred from
lower-level abstractions, resulting in a hierarchical structure
(see Figure 1). At the lowest level (Level 0) of abstraction
lies the original, machine-recorded archive of both user
and software behavior (cf. the Physical Form of the CWA),
for example a log file containing thousands or millions of

events. This lowest level may contain information about all
activities executed while the system was active, represent-
ing basic data and interaction provenance. A level above
(Level 1) can then group such activities, associating them to
functions performed by the system(cf. Physical Functions
of the CWA). A still higher level (Level 2) could cluster
these sequences into coherent actions from function calls
(cf. Generalized Functions of the CWA), generating visual-
ization provenance via derivation of the previous data and
interaction provenance. At this level, we may start to infer
very basic user tasks, such as a drag-and-drop operation.
The next level (Level 3) groups these basic user tasks into
higher-level user tasks, such as a series of drag-and-drop
operations, to a higher-level of abstraction, such as editing
a figure or diagram (cf. Abstract Functions of the CWA).
The highest levels in the provenance abstraction hierarchy
(Level m ...Level n, cf. Functional Purpose of the CWA)
represent the user intent or goals; For example, the user
is creating a figure or writing a report. Information could
be drawn from the overall views that are used by the
users. These higher levels of structure can contribute to
give lower levels of provenance meaning, and in turn lower
level provenance also can give more meaning to insight and
rationale provenance (as defined by Ragan et al. [12]).

An Abstraction Mapping Mechanism

At the heart of our proposed task abstraction framework
is the Abstraction Mapping Mechanism (AMM). The AMM
is a conceptual encoding of task hierarchy, mapping low-
level interaction sequences to intermediate user tasks, which
in turn support higher-level goals. While the AMM is a
hierarchy, it is not necessarily a tree structure. Instead, the
AMM represents a complex set of relationships between
processes and data at any level of abstraction. The AMM is
also not a structure that remains constant; newly-discovered
patterns can be dynamically inserted into the AMM to
update the structure in an iterative refinement process. In
the following sections, we discuss the creation of an AMM
from interaction data, complementary bottom-up and top-
down parsing procedures, and interaction with the AMM.
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Fig. 2. In the initializing stage, captured provenance is annotated,
mapped into a task hierarchy — by constructing an AMM —, and asso-
ciated across different granularity levels into a hierarchical structure.
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3.1 |Initializing

Provenance log data does not automatically come with tasks
and goals labeled for analysis. Instead, a task hierarchy must
be inferred from the logs. Thus, the first goal is to develop
a process for inferring the AMM from low-level interaction
data. To inform the development of such a process, we look
to existing work for guidance.

As part of analyzing visualization system interactions,
researchers often manually annotate low-level provenance
data with higher-level information about intents. This anno-
tation process may be informed by extant models used as
coding frameworks, analysis-specific and emergent issues,
as well as a review of task abstraction theory from the litera-
ture (e.g., [1], [9], [17]). For example, Battle et al. use a coding
scheme based on the Information-Seeking Mantra [18] to
label phases of analysis in their collected log data [11].
As such, researchers often utilize a top-down approach in
designing rules for constructing task hierarchies.

There also exist examples of analyzing low-level prove-
nance logs to identify interaction sub-sequences and other
low-level patterns, such as through training machine learn-
ing models (e.g., [10], [11]). We argue that the initializ-
ing process can benefit from both fop-down and bottom-up
analysis of provenance data (see Figure 2) unified by an
Abstraction Mapping Mechanism (AMM). Combining these
corpora of varying granularity into a task hierarchy allows
estimating abstract tasks by inferring mappings in a top-
down and bottom-up manner at later stages in our framework.
An analysis process of this form requires both contextual
input for known, high-level task structures (i.e, inferring
encodings of structures from the literature), as well as a
sufficiently large corpus of detailed provenance log data to
support data-driven analysis techniques, such as training
machine learning models (e.g., including interaction infor-
mation, tool parameters, etc.).

To exemplify these concepts, consider the process of
creating an email client capable of forming new sentences,
suggesting the next word a user may want to type, and
providing detailed email templates. This is not intended
to be an analogy of the entire visual analytics process, but
rather serves to communicate the main aspects of our frame-
work. A common first step for developing such capabilities
is to use machine learning to teach the email client the
different ways in which different words are used. Thus, this
is a bottom-up learning approach in which the email client
infers concepts like parts of speech inductively from a series
of exemplars. Additionally, informal taxonomic associations
between words may be formed, such as “pig” and “horse” as
types of farm animal. In contrast, providing a formal classi-
fication structure to learn from reflects a top-down approach.
For instance, providing the algorithm with grammar rules
would then cause it to learn how to determine semantic
parts of a sentence. Words from provided sentences would
then be sorted into parts of speech in a concrete manner.
Both bottom-up and top-down approaches may be inter-
leaved to provide robust results.

3.2 Parsing

The second stage involves the computational interpretation
of logged provenance data into higher-level task descrip-
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Fig. 3. In the parsing stage, the AMM constructed in the initializing stage
is used to estimate pursued tasks, based on the captured provenance
and known context.

tions. This is essentially a parsing operation in which inter-
action event sequences are translated into more abstract task
categories, utilizing the AMM generated at the initializing
stage (see Figure 3). This mechanism can produce anything
from a strict set of rules to general knowledge that is
externalized.

There are a number of challenges to such interpretation.
First, the meaning of any sequence of operations is an emer-
gent property of the sequence. Low-level operations only
have determinate meaning to the extent that they are related
to other low-level operations. Hence, sequences must be in-
terpreted holistically. Further, sequences themselves depend
on other sequences for their interpretation. Any event in the
sequence forms part of the context for every other event.

An additional challenge is the often unpredictable nature
of user interaction: Interaction with visual analytics systems
is frequently opportunistic and exploratory. Users may do
things for no apparent reason and with no apparent con-
nection to any previous or future action. They may begin
analysis sequences that they do not finish, or they may
finish them some time later after an interruption. Hence,
the parsing approach strives to be holistic and resilient to
incomplete and interrupted tasks. Any interpretation would
almost certainly be incomplete, consist of task stubs, and
may vary in terms of the level of interpretation achieved.

As a result, we propose an interpretation process that
applies both bottom-up and top-down parse strategies, each
being called upon opportunistically. As a bottom-up pro-
cess, sequences of low-level operations are considered as in-
stances of higher-level tasks, and sequences of higher-level
tasks are considered as instances of yet higher-level tasks.
Partially-matched tasks can cue a complementary top-down
strategy, driving the search for lower-level tasks/operations
that would complete them (i.e., given a sequence of user
operations, task abstractions can be used to predict and
drive the search for the most likely subsequent operation.)

We anticipate complementary bottom-up and top-down
processes operating at multiple levels of description con-
currently, with each level suggesting higher-level interpreta-
tions and each interpretation suggesting lower-level events.
This is essentially a hermeneutic circle, required in order
to achieve a holistic and context-sensitive analysis. Among
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others, the context for a given event (or group of events)
are its neighbors plus any candidate interpretations that
each nth event can contribute to the resolution of competing
interpretations. The result of the analysis is a hierarchical
structure akin to a parse tree in which low-level operations
are mapped to higher level interpretations.

Continuing with the email client analogy from the Ini-
tializing phase, this stage equates to an intelligent email
client that is able to use a grammar model, drawing in-
ferences about how words in a message link together to
form embedded grammatical units. A part of this process
would be the client interpreting sequences of words into
“known” embedded structures that it knows about, thereby
using these structures to anticipate subsequent words from
the user.
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Fig. 4. In the last stage of leveraging the task hierarchy, actions can
be initiated based on inferences, leveraging detected analysis tasks.
Depending on the levels of provenance and detected tasks, actions
can then be initiated on the same level but also on higher/lower levels
accordingly.

3.3 Leveraging

The third stage centers around the means by which a user
interacts with the AMM generated from the previous two
stages while using the system (see Figure 4). Because each
user of an analytical system will have different goals, differ-
ent levels of expertise, and different expectations of support,
the way in which information and suggestions are presented
to users will differ.

Starting with a top-down level of support intended for
novice users, the system could generate a set of templates
for how to complete the required task of the user. The user
is then guided through the steps to, for example, select
the data that they wish to analyze, choose the method by
which they want the data to be evaluated, and identify the
visual structure for presenting the results of that analysis.
The AMM can further assist in redirecting and correcting
the user if they begin to drift from the template, using
the knowledge stored from previous interactions to detect
when the user begins to perform unexpected or unhelpful
actions. A similar argument can be made for detecting

the frustration of a user, who may begin to exhibit such
unexpected behavior as a demonstration of their frustration.

Similarly, the AMM can support bottom-up processes,
building upon individual interactions. In this case, the sys-
tem permits the user to begin interacting with the system,
and will provide suggestions for next operations that will
guide the user towards the completion of their task. These
operations could be suggested at varying levels within
the AMM'’s hierarchy, ranging from individual clicks (e.g.,
suggesting interactions) to higher-level analysis phases (e.g.,
offering the next step in analysis). Here, the AMM uses its
stored knowledge to detect the interactions of the user, infer
the next step in their analytical process, and then suggest
future interactions based upon the training data.

Further, an analytical system can combine the knowl-
edge of the user and the history of previous tasks to
optimize the visual interface, attempting to maximize the
efficiency of the user by hiding unnecessary functionality
and focus their attention on the interactions that will enable
them to reach their goal. The AMM could also be presented
to the system developers, permitting them a glimpse at how
users are actually behaving in the system. If a developer can
identify the pain points in their current implementation by
seeing where users most often run into difficulty, they can
work to resolve these issues in future versions of the system.

Using our intelligent email client example to demon-
strate these ideas, the system at this stage would be able to
anticipate the next word that the user may want and suggest
it automatically. That is, the word processor does not just
understand what new sentences may be formed, but it is
also capable of determining probable words or phrases that
may be used next. Other examples of this can be found in
the tab completion functionality of IDEs and software such
as Overleaf, which are capable of learning and adapting
to user-defined functions and commands. Alternatively, the
email client may provide a template for users to leverage,
walking them through the template interactively to form a
well-written email. These examples involve both top-down
and bottom-up processes, leveraging the capabilities and
understanding formed by the previous two steps. However,
this step does not involve changing the AMM hierarchical
structure; rather, the AMM is simply leveraged here to
support advanced features. This does not mean that such
changes are impossible; it merely means that such changes
must be accomplished by revisiting the previous steps in the
process as appropriate.

4 |IMPROVING THE FRAMEWORK

Previous sections described the major stages of the frame-
work. There are inherent complexities in the design and im-
plementation of a multi-stage task hierarchy and the AMM
described in this paper: (1) iterative refinement of the AMM
and (2) the explicit mapping of context and variability.
Specifically, users and systems are situated in a variety of
contextual settings that include tasks, dataset uncertainty,
and others. In this section, we discuss the influencing fac-
tors on our proposed approach. Continuous improvement
and refinement is necessary to accurately determine these
factors, and minimize erroneous mapping.
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Fig. 5. An overview of the framework’s three stages and how discovered patterns can be processed and iteratively change the hierarchy: (1) New
context is added into the parsing stage, (2) the model is extended with a new activity, which is (3) consecutively parsed into a new rule.

4.1 Iterative Refinement of the Task Hierarchy

It is rare to be able to accurately infer a user’s intent on
the first try, and the same is true of provenance analysis.
Andrienko et al. [16] expressed the demand for performing
model evaluation and adaption to reflect the accuracy of
mental models, specifically. As such, the process of con-
structing an AMM will need to be performed iteratively,
where each iteration will involve revisiting all stages of
the framework in both the top-down and bottom-up ap-
proach. For example, new patterns discovered in the low-
level interaction sequences may lead the application to
identify a more relevant high-level task structure from the
literature (e.g., perhaps a particular goals-to-tasks structure
suggested by Lam et al. [8] is now more relevant than the
Information-Seeking Mantra [18]). Similarly, when mapping
a new high-level task structure to the low-level data, the
task structure can help the application predict what low-
level tasks or interactions may appear next in the dataset.
Figure 5 provides an example demonstrating how newly-
discovered patterns can feed back into the different stages
of the framework. Successive iterations could be computed
until a convergence threshold is reached, representing only
minimal changes to the current task hierarchy data structure
in later iterations. Ambiguity and misclassifications can
lead to indecision in the system. By prompting users with
disambiguation efforts during online provenance collection
and parsing, this ambiguity can be resolved. While this is
not possible for offline AMM parsing, ambiguous patterns
can be disambiguated by developers anticipating actions.

Revisiting our example of developing an email client
capable of suggesting the next word to type, the trained ma-
chine learning algorithm may misclassify or misunderstand
certain words. For example, the meaning of the word “land”
can vary greatly depending on context, ranging from a plot
of land that an individual owns to simply meaning firm
ground anywhere on Earth (i.e., not water). Therefore, if the
algorithm is only given example sentences where words like
“land” are used in a single context, the machine learning
algorithm may misinterpret the higher-level meaning of a
new sentence that uses the word in a different context. If the
algorithm is provided feedback to correct this error, then it
can learn this new context.

4.2 The Role of Context, Variability, and Uncertainty

In all three stages of initializing, parsing, and leveraging the
task hierarchy, we noted that information can be inferred
from either a top-down or bottom-up structure. Depending
on the information that can be obtained and meaningfully
interpreted, there is the danger of the AMM to be insuf-
ficiently expressive. We argue that the expressiveness of
the AMM is associated with the ability to consider context,
variability, and uncertainty.

Accounting for context to disambiguate outcomes in the
AMM can be based on a number of factors, including but
not limited to individual usage (e.g., level of expertise using
a VA tool), environmental dependencies (e.g., various views
or restrictions of VA systems), the application/analysis do-
main, or the user profile operating the system. In this way,
enriched sensemaking of the provenance data allows for
the inference of various interaction patterns, permitting a
system to better interpret the multidimensional data and
user actions. Over time, context-enriched provenance his-
tory data can refine the system’s understanding of what the
user is trying to accomplish. However, it also implies that
provenance captured in the task hierarchy has a context
dependence, which makes the interpreted structure inher-
ently biased to its source context. In our running email
client example, the phrase library can only store phrases
captured from previous sessions and categorize them with
user actions or clustering.

To maintain robustness of the task abstraction frame-
work, the variability of a system, actors and domains should
be represented in the AMM and during all stages of the
framework. Iterative refinement can appropriately deal with
this variability if the AMM is accurately mapping these
factors. Within an analysis system, the set of possible actions
and interactions is predetermined, and hence variability can
be narrowed down to smaller sets. To give these actions
additional meaning, context and variability can be used to
derive a more expressive structure. For example, expanding
a context menu will limit the user to executing one of the
available menu item operations. Capturing, relating, and
leveraging these dependencies in the AMM can lead to more
appropriate identification and generalization of user intents
and actions.
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Returning to the email client example which has been
trained to suggest the word “land” only within the context
of a plot of land, assume that a new user of the email client is
a flight instructor. As a result, the emails from this user only
incorporate “land” in the context of “how to land a plane.”
Without factoring in these context and variability factors, the
machine learning algorithm would repeatedly misinterpret
the use of the word. However, if the framework supports
iterative, contextual refinement, feedback from the user can
be collected to adapt the meaning of the word, as well as to
prioritize the new meaning over the old.

We now discuss details on influences of variability and
context in the different stages of the framework.

4.2.1 In Initializing

In order for context to be beneficial in the initializing stage
of the framework, capturing and inferring structure can
account for domain-specific customs. In order to more accu-
rately find and subsequently interpret patterns, information
about user profiles, application context, and analysis goals
can be employed in initializing the hierarchy. For example,
provenance data captured from both analysis and system
interactions can be annotated with information provided by
system developers (e.g., computing additional performance
metrics, filtering input, associating a function or method
with a specific task/goal).

Variability is a further factor that can influence frame-
work initialization. In visual analytics systems, variability is
influenced by a) the set of available interactions, b) user ex-
pertise and guidance, c) the set of pursued and recognized,
and tasks d) data characteristics and dimensionality.

We propose that influences of variability can be quan-
tified in the AMM in the form of probabilities , e.g. un-
certainty measures. During initializing, these uncertainties
can be used to direct inferences, yielding a more flexible
representation of user intents.

4.2.2 In Parsing

In the previous initializing stage, context and variability
were introduced to aid interpretation, and uncertainties
comprise the probability of an action being part of a se-
quence that subsequently comprises a task. Furthermore,
contextual cues can be used to concisely eliminate ambi-
guity (e.g., selecting a specific data point and closing a view
indicates that the user deliberately ended the selection pro-
cess). In the parsing stage, methods can be employed that
identify, capture, and explicitly incorporate context in the
AMM. This can be done on various levels, e.g., estimating
analysts’ expertise based on the pace of interactions and
overall time spent in the VA system.

In contrast, variability must be adapted constantly when
interpreting the hierarchy. In the previous phase, variability
could only be estimated. When parsing, estimated proba-
bilities can be validated and adapted based on captured
provenance, and ambiguous hierarchies can be altered. User
intents can vary widely among a collection of users, includ-
ing in their methodology, their expertise, and their initia-
tive. Most commonly, pursued tasks can be suspended or
dropped in favor of another due to a branch in the analysis
process. However, the possibility that a user will return
to a certain task cannot be outruled, so task estimations

can run in parallel to estimate upcoming actions. This also
introduces a temporal aspect into the task hierarchy, where
variability in actions progressively influences ambiguity of
tasks that are possibly pursued.

To deal with uncertainty arising from potential incom-
pleteness and ambiguity, interpretations may be assigned
probabilities depending on factors such as how completely
they integrate task primitives (i.e., how much of the “evi-
dence” has been accounted for) and the relative depth of an
analysis. These probabilities may be used as heuristics for
the adjudication between competing interpretations for fur-
ther search/expansion. An additional possibility to improve
interpretation plausibility is to permit users to explicitly
assess the mapping outcome following a set of interactions.
Such feedback can be used for continuous adaption, thereby
supporting contextual circumstances that would lead to
different interaction-intent mappings.

4.2.3 In Leveraging

When using the task hierarchy, variability and uncertainty
can be leveraged to improve an analysis outcome. For ex-
ample, this can be accomplished by methods ranging from
actively recommending likely outcomes of tasks to antici-
pating costly computations and running them in advance.
Continuously improving the task hierarchy by adapting
variability of outcomes and corresponding uncertainties can
lead to more complete and effective analysis, supporting
users by anticipating future actions through the hierarchy.
When parsing and leveraging the framework in a live
scenario, users could be prompted if the recommended
actions were actually useful, and feedback could contribute
in changes of AMM task probabilities. In online hierarchy
parsing and leveraging scenarios, users might be prompted
if the recommended actions were actually useful, and feed-
back could contribute in changes of AMM task probabilities.
Domain knowledge can be actively added into the system
by users. Referring to our email client example, users might
add slang words to the dictionary they frequently use that
should not be auto-corrected. Another aspect can be the
retrospective analysis of provenance logs by developers
and designers to understand how context and variability
affected probabilities in the AMM in practical use cases,
and if both existing tasks are matched without ambiguity
and new tasks can be inferred from ambiguous sequences.

5 USE CASE

This section describes a use case scenario to demonstrate the
application of the conceptual task abstraction framework,
using it to interpret a provenance data set. Alice and Bob are
hobby cyclists who seek to get into shape for the next sea-
son. As a first step, they want to determine their base fitness
level. They are using activity trackers to record their rides,
which are then synchronized to the Strava social sports
tracking platform. Strava supports detailed analysis of their
activities, including comparing their performances to that
of other riders on some segments of the rides. We recorded
Bob’s analysis trail to determine the average climbing speed
from a past ride in order to compare it to Alice’s climbing
speed, a common task that will be added as an experimental
feature to Strava with the help of our provenance abstraction
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Fig. 6. Overview of the activity protocol from the Strava activity analysis. It illustrates two levels of provenance (high and low), with goals abstracted
from the high-level provenance data. The high-level analysis goals are annotated, using analysis goals from Lam et al. [8].

framework. This recorded trail of interaction includes both
log data as well as a video of Bob exploring the self-recorded
activity data using Strava. The provenance data captured
from the analysis is semi-structured due to the analysis
being broken down into multiple webpages.

Figure 6 shows an overview of the captured provenance
information, structured into low-level actions and corre-
sponding high-level tasks. The high-level tasks are used to
abstract the user’s actions in a top-down fashion. The Strava
environment is confined, allowing only small variations in
analysis scenarios. The provenance hierarchy is enhanced to
accommodate context and variability in analyses:

(1) Switching the activity indicator changes the scope to
elevation analysis.
Applying a clustering algorithm on the GPS track
shows three segments: two segments without elevation
gain and one with elevation gain.
Brushing indicates an area of interest. The selected area
is evaluated, and the estimated trend calculation result
is zero, indicating a circular activity. In the second
brushing action, the trend calculation shows a positive
trend. Since we are looking at elevation over time, this
implies a climb.
The mouseover information shows that the user was
interested in the average speed data. This indicates the
user’s interest in average speed for a selected climb.
Next, we use recommendations to guide Bob through
the analysis of a time trial section, which shows different
characteristics from a climb section. These recommendations
are incorporated as a new feature in the Strava web inter-
face, recommending interesting features in the GPS-tracks
based on the constructed task hierarchy. At the beginning,
the activity type is selected to be distance as opposed to
elevation, context information that implies that elevation
gain was not determined to be relevant to the user. Based
on this assumption, the algorithm segments three uninter-
rupted flat sections in the selected activity, suggesting them
to the user to perform a detailed analysis. The user dismisses
two of them, but accepts the third. The elevation within
this segment is unchanged throughout; however, automatic

(2)

®)

)

clustering of the trajectory data reveals a recurring pattern,
implying more relevant contextual information. After the
user again interacts with the average speed and estimated
power values, the algorithm determines that the recurring
pattern corresponds to a segment (a pre-defined section
to compare performances of users). The task hierarchy is
adapted to incorporate the newly discovered context, and to
search in the available segments for sections representative
of the current analysis scenario (time trial, or elevation
gain/climbs).

6 DISCUSSION

Our proposed conceptual task abstraction framework en-
ables a meaningful mapping between raw provenance trails
and higher-level descriptions of tasks. What distinguishes
it from current approaches is that the mapping allows data
analysts and end users to use provenance data by leveraging
the hierarchy during their analysis being able to derive tasks
and goals. Decomposed high-level tasks and goals, like by
Lam et al. [8], and low-level interaction patterns [10] can
be combined, facilitating task inference. Thus, users can be
directed to more meaningful and accurate data insights.

We note that our proposed framework is conceptual and
has not yet been proven in practice. However, we illustrated
the possible application of the framework in an activity
analysis scenario by showing how the task hierarchy and
AMM are constructed based on a provenance generated
from low-level actions observed from a video inspection
and derived high-level tasks. The constructed hierarchy
was then applied to support analysis in a recommendation
engine of the analysis tool.

Significant challenges remain in practical implementa-
tion of the framework, particularly in learning from a large
number of log files or from historical provenance data
in various contexts. Another challenge is integrating this
task abstraction framework into a visual analytics system
and determining sensible levels of granularity for capturing
provenance from interactions, and then creating expressive
links between these levels. Deep learning and artificial
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intelligence techniques can help to solve this challenge by
iteratively improving the AMM.

We argue that the integration of context and variability
allows for a more flexible and concise representation when
parsing the task hierarchy. Iterative refinement will ensure
unexpected interactions and provenance will be used for
further optimizing the hierarchy. Gathering and external-
izing this contextual information and variability is highly
domain- and application-dependent. As a result, developers
of visual analytics systems will need to account for these
factors in a context-dependent method. Assigning uncer-
tainties to tasks in the AMM is one approach for handling
ambiguity.

We further note that using high-level tasks for recom-
mending actions to users could be detrimental, as many
systems are available to users with various levels of experi-
ence, expecting and accepting different levels of support.
The difficulty of deriving high-level tasks also poses an
interesting challenge, with developers having to resort to
demonstrations or training videos to determine how users
actually generate insight in existing systems and applica-
tions. We hope to provide a framework that accommodates
appropriate high-level inferences to render this method of
determining high-level goals unnecessary, thereby making
goal estimations more accurate.

7 AN AGENDA

We have outlined our framework and presented a concrete
use case that exemplifies how a task abstraction frame-
work from provenance can be utilized to facilitate analysis,
leveraging interactions and context to derive user intents.
Here, we list some research considerations and challenges
that must be addressed in order to implement such a task
abstraction framework.

Formalizing Levels of Provenance: Perhaps the most
significant challenge involves designing the syntax for de-
scribing tasks, particularly if an AMM is designed with
maximum flexibility in mind. Task abstraction is an infor-
mation hiding process in which some features are used
for classification and others are ignored. However, details
can be retained to a certain extent through the use of
arguments. For example, if a user adjusts a filter, there is
the question of which filter was the adjustment. Hence,
a task language might feature a statement of the form
filter_adjust (name, start, end).Theoptimalsyn-
tax of such a language is an open question.

A Hierarchical Provenance Standard: Current ap-
proaches for capturing and externalizing provenance in
visual analytics systems resort to idiosyncratic provenance
structures and lack hierarchical structure. Context is often
implicitly considered, but is rarely externalized as prove-
nance. Further, the incorporation of variability when feeding
provenance back in the system is rarely supported. As a
result, incomplete or ambiguous activities cannot be appro-
priately mapped to high-level tasks. Establishing a generic
provenance model that can accommodate a hierarchical
structure and supports the integration of context and vari-
ability would allow developers to leverage this formalized
information, permitting the implementation of more flexible
solutions based on logged provenance.

High-Level Goals: Constructing a provenance hierarchy
has the goal of determining overall analysis tasks, which
often may be reduced to one single goal. However, this
is rarely the case, especially when considering feature-rich
visual analytics systems. Capturing insight and rationale
provenance requires collecting additional information [12].
Training videos or paper/publication videos often demon-
strate how to use a tool to accomplish a specific task.
While this task is typically held outside of any broader
goal or context, it provides a simple yet effective way of
capturing insight and rationale provenance for high-level
tasks. However, better ways for automatically externalizing
tasks as provenance could be immensely beneficial, because
availability of such demonstrations is limited and highly
system-specific.

Granularity of Mappings between Levels of Hierarchy:
A challenge in implementing an AMM is determining the
granularity of the mappings between each level of the
hierarchy. Developers trying to implement an AMM must
consider how granular the mappings between levels of
the hierarchy should be. Some mappings between level
pairs may be finer or coarser than others, depending on
how important the finer-grained information is and how it
might be used. The hierarchy needs to support such varying
granularities of the mappings.

Automated Capture of Context: While we have dis-
cussed different means of determining and integrating con-
text and variability into a provenance framework, we still
consider the automatic detection of relevant context as a
challenge for future research. Automatic retrieval of context
could significantly increase the amount of data collected,
and subsequently meaningful information could be con-
cealed by noisy, irrelevant data, so this retrieval must be
considered carefully. Simultaneously, automatically assess-
ing the variability of provenance can significantly improve
the accuracy of detected tasks, distinguishing users who
are pursuing different analysis approaches. Accounting for
this could reduce ambiguity and interpretation bias in the
iterative provenance hierarchy.

Guidance from the Task Hierarchy: At a higher level,
possibilities for task hierarchy usage speak to broad UX
and UI challenges. A significant challenge to user-centered
design is identifying when it is appropriate to present
guidance and feedback to users, as well as what form that
guidance should take. The overarching goal of these inter-
ventions is to minimize interruptions and frustrations to the
analysis process of the user, while still remaining helpful
enough to correct any issues faced by the user during
their interactions. The task hierarchy could be leveraged to
optimize guidance and feedback more appropriately with
less interaction interruption.

8 CONCLUSION

We presented a conceptual framework that leverages a
hierarchical provenance structure to generate effective task
abstraction across multiple levels of provenance. The cre-
ation of this provenance structure, which we termed an
Abstraction Mapping Mechanism, consists of three stages:
initialization of the provenance hierarchy, the parsing of it
into a task abstraction hierarchy, and the leveraging of this
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task abstraction hierarchy to aid users of visual analytics
systems. We discussed the effects of context, variability,
and uncertainty of this framework, and demonstrated a
use case scenario to illustrate the possible application of
the framework. We conclude by outlining an agenda that
discusses challenges associated with the implementation of
the framework in practice.
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