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Abstract

The problem of evaluating the accuracy of Poisson approximation to the distri-
bution of a sum of independent integer-valued random variables has attracted a lot
of attention in the past six decades. From a practical point of view, it has impor-
tant applications in insurance, reliability theory, extreme value theory, etc.; from a
theoretical point of view, the topic provides insights into Kolmogorov’s problem.

The task of establishing an estimate with the best possible constant at the leading
term remained open for decades. The paper presents a solution to that problem. A
first-order asymptotic expansion is established as well.

We generalise and sharpen the corresponding inequalities of Prokhorov, LeCam,
Barbour, Hall, Deheuvels, Pfeifer, and Roos. A new result is established for the
intensively studied topic of Poisson approximation to the binomial distribution.
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1 Introduction

Let X1, X2, ..., Xn be integer-valued random variables (r.v.s). Denote

Sn = X1+...+Xn, λ ≡ λ(n) = IESn.

The task of approximating the distribution of a sum of independent random variables
lies at the hart of the probability theory. The central role plays the normal approximation.
However, in many situations Poisson approximation is preferable (cf. [2, 42]).

Interest to the topic of Poisson approximation arises in connection with applications in
extreme value theory, insurance, reliability theory, etc. (cf. [3, 4, 24, 32, 38]).

Poisson approximation appears naturally in extreme value theory and other situations
where one deals with the distribution of a large number of rare events [4, 32, 38].

Let Xk,n denote the k-th largest sample element, and let Nn(x) =
∑n

i=1 1I{Xi>x} be
the number of exceedances of threshold x. Then

{Xk,n ≤ x} = {Nn(x) < k}.

In applications indicators 1I{Xi>x} can be dependent. A well-known approach consists
of grouping observations into blocks which can be considered almost independent [12]. The
number of r.v.s in a block is an integer-valued random variable, hence the number of rare
events is a sum of almost independent integer-valued r.v.s.

In reinsurance applications the sum
∑n

i=1Yi1I{Yi > x} of integer-valued r.v.s allows
to account for the total loss from the claims {Yi} exceeding a threshold x [22]. More
information concerning applications can be found in [3, 4, 22, 32].
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In 1950s Kolmogorov has formulated a question about the accuracy of approximation
of the distribution of a sum of independent and identically distributed (i.i.d.) r.v.s by
infinitely divisible distributions (Kolmogorov’s uniform approximation problem). The topic
has attracted a lot of attention among researchers (see, e.g., [1, 39, 42] and references
therein).

From a theoretical point of view, the question about the accuracy of Poisson approxima-
tion is a particular case of Kolmogorov’s problem. Besides, there is a connection between
the topics of Poisson and compound Poisson approximation [41, 56, 57].

In a range of situations both normal and (compound) Poisson approximations can
be applicable (cf. [1, 2, 42]). Due to the complex structure of the compound Poisson
distribution, in applications one often would prefer normal or pure Poisson approximation.

One can choose between possible types of approximation by comparing estimates of the
accuracy of approximation. Obviously, one would make a choice according to the sharpest
estimate.

The problem of evaluating the accuracy of normal approximation was raised by Lia-
punov [35]. It lead to a vast literature with contributions from many renowned authors
(see, e.g., [1, 38, 49] and references therein).

The problem of evaluating the accuracy of Poisson approximation to the binomial dis-
tribution goes back to Prokhorov [42]. The problem attracted a lot of attention among
specialists (see, e.g., [8, 9, 13, 39, 41, 45, 50, 55] and references therein).

Let πλ denote a Poisson Π(λ) r.v.. In the case of independent 0-1 r.v.s {Xi} we set

pi = IP(Xi=1) (i≥1), p∗n = max
i≤n

pi, θ =
n∑

i=1

p2i /λ.

Many authors worked on the problem of evaluating the total variation distance d
TV
(Sn; πλ)

when {Xi} are 0-1 r.v.s (see, e.g., [4, 39] and references wherein).
In the case of independent and identically distributed (i.i.d.) Bernoulli B(p) r.v.s

Prohorov [42] has established the existence of an absolute constant c such that

d
TV
(Sn; πnp) ≤ cp. (1)

LeCam [33] has shown that

d
TV
(Sn; πλ) ≤ 4.5p∗n , d

TV
(Sn; πλ) ≤ 8θ if p∗n≤1/4.

Kolmogorov ([30], Lemma 5) points out that

d
TV
(Sn; πλ) ≤ C

n∑
i=1

p2i , (2)

where C is an absolute constant. LeCam [33, 34] attributes inequality

d
TV
(Sn; πλ) ≤

n∑
i=1

p2i (3)
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to Khintchin [28]. Kerstan [27] has shown that

d
TV
(Sn; πλ) ≤ 1.05

n∑
i=1

p2i /λ (4)

if p∗n := maxi≤n pi≤1/4. Romanowska [43] has noticed that

d
TV
(B(n, p);Π(np)) ≤ p/2

√
1−p . (5)

We set (1−e−x)/x = 1 if x = 0. Estimate

d
TV
(Sn; πλ) ≤ λ−1(1−e−λ)

n∑
i=1

p2i (6)

is a straightforward consequence of Lemma 4 in Barbour & Eagleson [8]. More estimates of
the accuracy of Poisson approximation can be found [19, 39, 41, 44, 55], see also references
therein.

An estimate of d
TV
(Sn; πλ) with correct (the best possible) constant at the leading term

has been found by Roos [45]:

d
TV
(Sn; πλ) ≤ 3θ/4e(1−

√
θ )3/2 (7)

(see also [17]). In the case of L(Sn) = B(n, p) the right-hand side (r.-h.s.) of (7) is

3p/4e(1−√
p )3/2 ≥ 3

4e
p(1+1.5

√
p+3.75p).

It is shown in [45] that constant 3/4e at the main term in (7) cannot be improved.
The rate of the second-order term of the right-hand side of estimate (7) has been

improved by Novak [38], Theorem 4.12:

d
TV
(Sn; πλ) ≤ 3θ/4e+ 2δ∗ε+ 2δ2, (8)

where ε = min{1; (2π[λ−p∗n])
−1/2 + 2δ/(1−p∗n/λ)}, p∗n = maxi≤n pi,

δ =
(
1−e−λ

) n∑
i=1

p2i /λ, δ
∗ =

(
1−e−λ

) n∑
i=1

p3i /λ.

Note that δ2 ≤ δ∗. If L(Sn) = B(n, p), then (8) becomes

d
TV
(Sn; πnp) ≤ 3p/4e+ 2(1−e−λ)p2ε+ 2(1−e−λ)2p2, (8∗)

where λ = np, ε = min{1; (2π[(n−1)p])−1/2 + 2(1−e−λ)p/(1−1/n)}. The second-order
term in (8∗) is of order p2 ∧ np3.

The problem of evaluating the accuracy of Poisson approximation to the distribution
of a sum of independent non-negative integer-valued r.v.s has been considered, e.g., in
[5, 10, 6, 21, 27, 38]. W.l.o.g. we may assume that IEXi>0 (∀i).
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Franken [21] has shown that

dK(Sn; πλ) ≤
2

π

n∑
i=1

(IE2Xi + IEXi(Xi−1)),

where dK(X;Y ) = supx |FX(x)− FY (x) denotes the uniform distance between the distri-
butions of random variables X and Y with distribution functions (d.f.s) FX and FY .

Denote λ∗ =
∑n

i=1IP(Xi=1), λ∗2 =
∑n

i=1IP(Xi=1)2. Kerstan [27] has proved that

d
TV
(Sn; πλ∗) ≤

n∑
i=1

IP(Xi≥2) + min{λ∗2; 1.05λ∗2/λ∗}.

Inequalities (3) and (6) have been generalised to the case of non-negative integer-valued
r.v.s:

d
TV
(Sn; πλ) ≤ λ−1(1−e−λ)

n∑
i=1

IE|Xi−X∗
i |IEXi, (9)

where X∗
i denotes a random variable with the distribution

IP(X∗
i =m) = (m+1)IP(Xi=m+1)/IEXi (m≥0) (10)

(see [38], ch. 4). Distribution (10) differs by a shift from the distribution introduced by
Stein [51], p. 171. Hereinafter random variables Xi and X∗

i can be considered defined on
a common probability space (this includes the case where X∗

i is independent of Xi).

Note that X∗ d
=X if and only if L(X) is Poisson. If {Xi} are Bernoulli B(pi) r.v.s,

then X∗
i ≡0, and (9) entails (6).

In Theorem 1 below we derive a (8)-type bound for a sum of independent non-negative
integer-valued random variables with a correct constant at the leading term.

A number of authors approximated L(Sn) by unit measures (signed measures) in order
to achieve a higher rate of the accuracy of approximation (cf. [14, 11, 16, 6]). We shall un-
derstand by unit measures only those unit measures that are not probability distributions.
Such a unit measure µ obey µ(A)<0 (∃A⊂Z), where Z denotes the set of integer num-
bers. An example of a unit measure is Poisson measure Πs with s<0: Πs(k) = e−ssk/k!
as k∈Z+, where Z+ = {0, 1, 2, ...} is the set of non-negative integer numbers.

Theorem 2 below presents an estimate of the accuracy of approximation to L(Sn) by
a particular unit measure.

One can consider also shifted (translated) Poisson approximation. Let

σ2 = varSn, a = [λ−σ2], b = {λ−σ2}, µ = σ2+ b, (11)

where [x] = max{k∈Z : k≤x} and {x} = x−[x].
Barbour & Čekanavičius [6] have shown that

d
TV
(Sn; a+πµ) ≤ (1 ∧ σ−2)

(
b+ dn

n∑
i=1

ψi

)
+ IP(Sn<a), (12)
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where dn = maxi≤n dTV
(Sn,i;Sn,i+1), Sn,i = Sn−Xi, σ

2
i = varXi,

ψi = σ2
i IEXi(Xi−1) + |IEXi−σ2

i |IE(Xi−1)(Xi−2) + IE|Xi(Xi−1)(Xi−2)|.

If {Xi} are i.i.d. Bernoulli B(p) r.v.s, then µ=npq+{np2}, and (12) yields

d
TV
(Sn; a+πµ) ≤ (1 ∧ 1/npq)

(
{np2}+ 2np2qdn

)
+ IP(Sn< [np2]), (12∗)

where q=1−p. Note that dn≤1/
√
(n−1)p if p≤1/2 (see Proposition 4.6 in [11]).

Let {Xi} be independent Bernoulli B(pi) r.v.s, λ2 = λ−σ2, a, b, µ, σ2 are defined in
(11). Čekanavičius & Vaitkus [18] have shown that

d
TV
(Sn; a+πµ) ≤ {λ2}/(σ2+{λ2}) + 0.93σ−3λ2 + IP(Sn<a) (13)

and IP(Sn<a) ≤ e−σ2/4 . If pi=p (∀i), then (13) becomes

d
TV
(Sn; [np

2]+πnpq+{np2}) ≤ {np2}/npq + 0.93
√
p/nq + e−npq/4. (13∗)

Theorem 3 below removes the terms IP(Sn<a), e
−σ2/4 , and sharpens the constants at

the main terms in (12) and (13); the moment assumption is weaker than that in (12).

Let S denote the class of measurable functions taking values in [0; 1]. Recall that

d
TV

(X;Y ) = sup
h∈S

[ IEh(X)−IEh(Y ) ] (∗)

is the total variation distance between the distributions of r.v.s X and Y .
Asymptotic expansions for IEh(Sn)− IEh(πλ) have been given by Barbour [5]. Barbour

& Jensen [10] have considered the case h ∈ ℓ1. Asymptotic expansions in the case of
independent 0-1 r.v.s and unbounded functions h are given by Barbour et al. [7] and
Borisov & Rouzankin [13].

The problem of establishing an estimate of the accuracy of Poisson approximation to
the distributions of a sum of independent integer-valued non-negative r.v.s in terms of the
total variation distance with a correct constant at the leading term remained open for
a long while. In particular, an open question was whether 3/4e would remain the best
possible constant.

Below we give the affirmative answer to that question. We generalise and sharpen the
corresponding results from [5, 6, 7, 13, 18]. An estimate of the total variation distance
with a correct constant at the leading term in the case of integer-valued r.v.s seems to be
established for the first time.

2 Results

Let {Xi}i≥1 be independent non-negative integer-valued r.v.s.
Recall the definitions of two distances we use below. The equivalent definition of the

total variation distance between the distributions of r.v.s X and Y is

d
TV
(X;Y ) ≡ d

TV
(L(X);L(Y )) = sup

A⊂Z+

(
IP(X∈A)− IP(Y ∈A)

)
.
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The Gini–Kantorovich distance between the distributions of r.v.s X and Y with finite
first moments is defined as

d
G
(X;Y ) = inf

X̃,Ỹ
IE|X̃−Ỹ |, (14)

where the infimum is taken over all random pairs (X̃, Ỹ ) with the marginal distributions
L(X) and L(Y ) respectively. Barbour et al. [4] call it the “Wasserstein distance” after
Dobrushin [20] attributed it to Vasershtein [54].

Distance d
G

was introduced by Gini [23] and Kantorovich [29] (to be precise, Kan-
torovich has introduced a class of distances that includes (14)). If X and Y take values
in Z+, then [47]

d
G
(X;Y ) =

∑
k≥1

|IP(X<k)− IP(Y <k)| .

Taking into account (14), estimate (9) can be rewritten as

d
TV
(Sn; πλ) ≤ λ−1(1−e−λ)

n∑
i=1

d
G
(Xi;X

∗
i )IEXi. (9∗)

Given a random variable X and a random pair (ξ, η) with finite second moments, let

κX := IEX−varX, γξ,η := IE|ξ(ξ−1)− η(η−1)|.

We set ε∗λ = 1 ∧ 1/
√
2π[λ] , λi = λ−IEXi, ui = 1−d

TV
(Xi;Xi+1), U =

∑n
i=1 ui, X0 := 0,

ε1 = λ−1(1−e−λ)
n∑

i=1

min{2IE|Xi−X∗
i |; γXi,X∗

i
εi,n}IEXi,

ε2 = 2λ−1(1−e−λ)
n∑

i=1

IEXi|κXi
|εi,n, ε3 = 2λ−1(1−e−λ)|κSn|ε+0,n,

εi,n = 1 ∧
√
2/π

/(
1/4+U−ui

)1/2
∧
(
ε∗λi

+2ε+i,n
)
, ε+i,n =

1−e−λ

λi

n∑
j=1

d
G
(Xj;X

∗
j )IEXj.

Theorem 1 If X1, ..., Xn are independent non-negative integer-valued random variables
with finite second moments, then

d
TV
(Sn; πλ)≤3θ∗/4e+ ε1 + ε2 + ε3, (15)

where θ∗=
∣∣∣∑n

i=1 κXi

∣∣∣/λ.
In the case of independent and identically distributed r.v.s (15) becomes

d
TV
(Sn; πλ) ≤ 3

4e
|κX |/IEX + (1−e−λ)εX , (15∗)

where εX = min{2IE|X−X∗|; ε1,nγX,X∗}+ 2|κX |ε1,n + 2(1−e−λ)|κX |dG
(X;X∗)/IEX.

Theorem 1 generalises inequality (8) to the case of integer-valued r.v.s: if {Xi} are 0-1
r.v.s, then ε1 = 0, and (15) entails (8). Constant 3/4e in (15) cannot be improved.
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The moment assumption can be relaxed at a cost of adding an extra term if one uses
truncation at some levels {Ki} (i.e., switches from {Xi} to {X ′

i}, where X ′
i = Xi1I{Xi≤

Ki}) since d
TV
((X1, ...,Xn); (X

′
1, ...,X

′
n)) ≤

∑n
i=1IP(Xi>Ki).

Note that the terms ε2 and ε3 in (15) vanish if κXi
= 0 (equivalently, IEXi=IEX∗

i )
for all i (cf. Example 2).

Quantity 1−(var Sn)/IESn appears naturally in the theory of Poisson approximation
(cf. [4], p. 49). Theorems 1 and 2 highlight that individual quantities κXi

play central
role in the bound to the accuracy of Poisson approximation when one deals with a sum of
integer-valued r.v.s.

Example 1. Let X,X1, X2, ... be independent geometric Γ0(p) r.v.s:

IP(X=m) = (1−p)pm (m≥0).

Then Sn is a negative Binomial NB(n, p) r.v..
It is easy to see that IP(X∗

i = m) = (m+1)pm(1−p)2 . Hence

X∗
i

d
= Xi +X.

With λ :=np/(1−p), r :=p/(1−p), (9) entails the estimate

d
TV
(Sn; πλ) ≤

(
1−e−np/(1−p)

)
r, (16)

which is due to Barbour [5]. It is easy to check that

ε1 ≤ 2
(
1−e−nr

)
min{r; 2r2}, ε1,n ≤ ε⋆n,p ,

ε2 = 2
(
1−e−nr

)
r2εn,p , ε3 = 2

(
1−e−nr

)2
r2,

where

ε⋆n,p = 1 ∧
√
2/π

/(
1/4+(n−1)p

)1/2
∧
(
1/
√
2π[(n−1)p] + 2r/(1−1/n)

)
.

If p ≤1/2, then (15) yields

d
TV
(Sn; πλ) ≤ 3r/4e+

(
1−e−nr

)(
2+6ε⋆n,p

)
r2, (17)

which is sharper than (16) if p <
(
1−3/4e(1−e−λ)

)/(
3−3/4e(1−e−λ)+6ε⋆n,p

)
.

Estimate (17) has the correct constant 3/4e at the leading term. The best estimate of
d

TV
(NB(n, p);Π(np)) is due to Roos [46]:

d
TV
(NB(n, p);Π(np)) ≤ min{3r/4e;nr2}. (18)

Example 2. Let X1, X2, ..., Xn be independent r.v.s with the distributions

IP(Xi=0)=1−pi+p2i /2, IP(Xi=1)=pi−p2i , IP(Xi=2)=p2i /2.
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Note that IEXi = varXi = pi. One can check that d
TV
(Xi; πpi) ≤ 2

3pi. Therefore,

d
TV
(Sn; πλ) ≤

n∑
i=0

d
TV
(Xi; πpi) ≤

2

3

n∑
i=1

p3i . (19)

This inequality is due to Deheuvels & Pfeifer [19].
From (10), X∗

i is a Bernoulli B(pi) random variable. Note that IEXi=IEX∗
i , κXi

=
0 (∀i) and ε2=ε3=0. One can check that

ε1=λ
−1(1−e−λ)

n∑
i=1

p3i εi,n, dTV
(Xi;X

∗
i ) = d

G
(Xi;X

∗
i ) = γXi,X∗

i
=p2i .

Theorem 1 yields

d
TV
(Sn; πλ) ≤

1−e−λ

λ

n∑
i=1

p3i min

{
1;

(
1√

2π[λ−pi]
+ 2

1−e−λ

λ−pi

n∑
j=1

p3j

)}
, (20)

which is sharper than (19) if 2λ > 3(1−e−λ). 2

Asymptotic expansions to the Binomial distribution B(n, p) have been given by Uspen-
sky [53] (see also Franken [21]). Herrmann [25], Shorgin [50] and Barbour [5] present full
asymptotic expansions with explicit estimates of the error terms, the latter for a sum of in-
dependent non-negative integer-valued r.v.s. Asymptotic expansions for IEh(Sn)−IEh(πλ)
in the case of independent 0-1 r.v.s {Xk} and unbounded function h have been given by
Barbour et al. [7] and Borisov & Ruzankin [13].

The formulation of the full asymptotic expansions is cumbersome. Considerable atten-
tion has been given to first-order asymptotic expansions (see, e.g., Kerstan [27], Kruopis
[31], Čekanavičius & Kruopis [16]), Barbour & Čekanavičius [6], Barbour et al. [4]).

The next theorem presents a first-order asymptotic expansion to L(Sn) in the case
of a sum of independent non-negative integer-valued random variables with finite second
moments.

Let π⋆
λ denote a random variable with the distribution

IP(π⋆
λ=k) = IP(πλ=k)(k−λ)2/λ (k∈Z+). (21)

Theorem 2 Let X1, ..., Xn be independent non-negative integer-valued random variables
with finite second moments. For any function h∈S∣∣∣∣∣IEh(Sn)− IEh(πλ)− (IEh(πλ+1)−IEh(π⋆

λ))
n∑

i=1

κXi
/2λ

∣∣∣∣∣ (22)

≤ ε1 + ε2 + ε3 .

Theorem 2 sharpens the corresponding bounds in Barbour [5], Barbour et al. [7],
Barbour et al. [4], corollary 9.A.1, Barbour & Čekanavičius [6] and Borisov & Rouzankin
[13]; the moment assumption is weaker than those in [5, 6].
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If X,X1, ..., Xn are i.i.d.r.v.s, then (22) becomes∣∣∣IEh(Sn)− IEh(πλ)− (IEh(πλ+1)−IEh(π⋆
λ))κX/2IEX

∣∣∣ ≤ ε1 + ε2 + ε3. (22∗)

The right-hand side of (22∗) is typically of order (IEX)2, while the right-hand side of (15∗)
is typically of order IEX.

A straightforward consequence of (22) is the following relation:

|d
TV
(Sn; πλ)− d

TV
(π⋆

λ; πλ+1)θ∗/2| ≤ ε1 + ε2 + ε3 . (23)

Using Stirling’s formula, one can check that

d
TV
(π⋆

λ; πλ+1) =
√
2/πe +O

(
1/
√
λ
)

(λ→ ∞)

(cf. (4.59) in [38]). Hence

d
TV
(Sn; πλ) = θ∗/

√
2πe+O

(
θ∗/

√
λ + ε1 + ε2 + ε3

)
. (23∗)

Inequality (23∗) generalises the corresponding results of Prokhorov [42] and Deheuvels &
Pfeifer [19] to the case of non-negative integer-valued r.v.s.

Remark 1. Note that

IEh(πλ+1)− IEh(π⋆
λ) = −λIE∆2h(πλ).

Thus, (22) can be rewritten as∣∣∣IEh(Sn)− IEh(πλ) + IE∆2h(πλ)
n∑

i=1

κXi
/2
∣∣∣ ≤ ε1 + ε2 + ε3 (h∈S). (22⋆)

Remark 2. Denote by Pn the unit measure

Pn(·) = IP(πλ= ·) +
(
IP(πλ+1= ·)− IP(π⋆

λ= ·)
) n∑

i=1

κXi
/2λ.

Theorem 2 states that
∥L(Sn)− Pn∥ ≤ 2(ε1 + ε2 + ε3),

where ∥ · ∥ denotes the total variation norm.

The next theorem deals with the approximation of Sn by [κSn ]+πµ (shifted Poisson
approximation), where

σ2=varSn, µ=varSn+{κSn}.
Note that

[κSn ]+IEπµ= IESn, |varπµ− varSn|<1.

Let {X̃j} denote independent copies of {Xj}, Ȳ := Y −IEY, εn = ε0,n,

ε̂µ = min
{
µ−1(1−e−µ); ε̄µ

}
, ε̄µ = 2ε∗µ

√
2/eµ + 2µ−1(1−e−µ)ε⋆µ,

ε⋆µ = µ−1(1−e−µ)|{κSn}|+ ε#n , ε
#
n = 2µ−1(1−e−µ)

n∑
i=1

σ2
i εi,nIEXi +

n∑
i=1

δµ
Xi,X̃i

,

δµ
Xi,X̃i

= µ−1(1−e−µ)min
{
2IE|X̄i||Xi−X̃i|; IE|X̄i||Xi(Xi−1)− X̃i(X̃i−1)|εi,n

}
.
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Theorem 3 If X1, ..., Xn are independent non-negative integer-valued random variables
with finite second moments, then

d
TV
(Sn; [κSn ]+πµ) ≤ |{κSn}|ε̂µ + ε#n . (24)

Inequality (24) is sharp in the following sense: if all {Xj} are constants, then (24)
becomes the equality. If {Xj} are i.i.d. non-degenerate r.v.s, then typically µ→∞ as
n→∞, ε̂µ∼2/µ

√
πe , ε#n ∼ 2(1/

√
2πµ+2d

G
(X;X∗))IEX.

Estimate (24) has advantages over the Berry–Esseen bound (cf. (25) below).

Example 3. Let L(Sn) = B(n, p), and set q = 1−p. Clearly,

µ = npq+{np2}, κSn = np2, δµ
Xi,X̃i

= 0.

Estimate (24) entails

d(n)p ≡ d
TV

(
Sn; [np

2]+πnpq+{np2}
)
≤ {np2}ε̄µ + 2pε1,n, (24∗)

where ε1,n ≤ min
{ √

2/π√
1/4+(n−1)p

; 1√
2π[(n−1)p]

+ 2p1−e−np

1−1/n

}
.

The term 2pε1,n appears here because of estimate (27). B(n, p) is known to be uni-
modal. For the unimodal distribution we can apply (27′), i.e., replace εi,n with ε′i,n =
maxk IP(Sn,i=k):

d(n)p ≤ {np2}ε̄µ + 2pεon, (24+)

where εon := min{ε1,n; ε′1,n}. Note that

ε⋆µ ≤ {np2}/npq + 2pεon, ε
∗
µ ≤ 1/

√
2π[npq] ,

ε̄µ ≤ 2/[npq]
√
eπ + 2ε⋆µ/npq ≤ 2/[npq]

√
eπ + 2{np2}/(npq)2 + 4εon/nq.

Thus,

d(n)p ≤ 2{np2}√
eπ [npq]

+ 2
{np2}2

(npq)2
+ 4

{np2}
nq

εon + 2pεon. (24o)

In particular, if p = p(n) obeys n−1 ≪ p≪ n−1/3, then

ε̄µ ≤ 2/np
√
πe(1+o(1)), ε1,n ∼ 1/

√
2πnp , ε⋆µ ≤ {np2}/np(1+o(1)),

and hence

d(n)p ≤
(

2√
πe

{np2}
np

+

√
2p√
πn

)
(1+o(1)). (24⋆)

Constants in the r.-h.s. of (24⋆) are better than those in (12∗), (13∗).
Note that one only needs to consider p≤ 1/2 since L(n−Sn)=B(n, 1−p) (cf. [42]).

Evaluating d(n)p separately for p<1/
√
n and p∈ [1/

√
n; 1/2] yields

sup
0≤p≤1/2

d(n)p ≤ 2/
√
πe√

n−2
+

0.9n1/4

n− 1
+

2+1.8/n1/4

(
√
n−1)2

(n>4). (25)
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Indeed, d(n)p ≤ 3/4e
√
n+4/n by (8∗) if p<1/

√
n . If 1/

√
n ≤p≤1/2, we denote by f(p)

the r.-h.s. of (24o) with εon replaced by ε′1,n. Note that ε
′
1,n ≤ 0.45/

√
(n−1)p (see (2.22) in

[18]). Function f on [1/
√
n ; 1/2] first declines, then grows. Hence sup1/

√
n≤p≤1/2 f(p) =

max{f(1/
√
n); f(1/2)} = f(1/

√
n) , yielding (25).

Bound (25) is preferable to (6) – (8∗) if p≥ 8
√
e/3

√
πn (1+o(1)). Inequality (25) has

advantages over Meshalkin’s [37] and Presman’s [40] results as only estimates with explicit
constants matter in applications; besides, the structure of the approximating distribution
in (25) is simpler and does not involve r.v.s that allow for negative values.

For all small enough p the right-hand side of estimate (25) is sharper than that of the
Berry–Esseen inequality. Note that estimate (25) has another advantage over the Berry–
Esseen inequality: a uniform in p∈(0;1/2] Berry–Esseen bound is infinite. 2

Given a function f : Z+→ IR, we denote

Rf (m, k, ℓ) = f(m)− f(k)− (m−k)∆f(ℓ),
c1(f) = supi,j |∆f(i)−∆f(j)|, c2(f) = ∥∆2f∥,
δℓm,k = min{c1(f)|m−k|; c2(f)|(m−ℓ)(m−ℓ−1)− (k−ℓ)(k−ℓ−1)|/2}

(ℓ≥0,m≥0, k≥0).

Proposition 4 For any function f : Z+→ IR and any ℓ≥0,m≥0, k≥0,

|Rf (m, k, ℓ)| ≤ δℓm,k. (26)

Relation (26) is a discrete analogue of Teylor’s formula.

Lemma 5 For any bounded function f̃

|IE∆f̃(Sn,i)| ≤ min
{
2∥f̃∥εi,n ; (∥∆f̃∥∧2∥f̃∥ε∗λi

) + 2∥∆f̃∥ε+i,n
}
. (27)
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