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Dynamic systems described by fc(z) = z2 + c is called Mandelbrot set (M-set), which is
important for fractal and chaos theories due to its simple expression and complex struc-
ture. fc(z) = zk + c is called generalized M set (k–M set). This paper proposes a new theory
to compute the higher and lower bounds of generalized M set while exponent k is rational,
and proves relevant properties, such as that generalized M set could cover whole complex
number plane when k < 1, and that boundary of generalized M set ranges from complex
number plane to circle with radius 1 when k ranges from 1 to infinite large. This paper
explores fractal characteristics of generalized M set, such as that the boundary of k–M
set is determined by k, when k = p/q, where p and q are irreducible integers, (GCD(p,q) = 1,
k > 1), and that k–M set can be divided into |p–q| isomorphic parts.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
1. Introduction

The dynamic system fc(z) = z2 + c is called Mandelbrot set (M-set) [1] as Mandelbrot first proposed it in 1982. Later, Gujar
and Dhurandhar extended M-set into generalized M-set fc(z) = zk + c with different exponent k. When exponent is k, it is
called k–M set. Thus we can see that original M-set is 2-M set.

k–M set is important for chaos and fractal theories. Many scholars have conducted researches on k–M sets. Huang studied
periodic orbit of k–M set when k is a positive integer [2]. Gujar and Dhurandhar explored the structure of k–M set where k is a
real number [3,4]. Shirriff researched characteristics of k–M set where k is a complex number [5].

After year 2000, more progresses have been made with advancement of computer techniques, especially computer gra-
phic techniques. Wang explored escape time of M-set [6]. Noah analyzed the radius of M-set [7]. Pastor and Ashish analyzed
chaotic features of M-set [8–9]. Fractal is widely used with computer techniques [10–12,14] when M-set continues to attract
researchers’ attentions [13].

However, there are still some problems unsolved. For example, the structure of k–M set is unknown when k is not an
integer.

This paper presents our following results in research of k–M set where k is a rational number:
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(i) Boundary of k–M set falls between circle with radius R ¼ ðk� 1Þ � k�
k

k�1 and circle with radius R ¼ 2
1

k�1 when k > 1.
(ii) A k–M set could contain whole complex number plane when k < 1.

(iii) If k = p/q, p and q are irreducible integers, (GCD(p,q) = 1, k > 1); then the symmetry property of k–M set is decided by p
and q.

The remainder of the paper is organized as follows. We analyze the boundary of k–M set with k > 0 in Section 2. Then, we
analyze the boundary of k–M set with k < 0 in Section 3. Then, we analyze symmetry property of k–M Set with exponent k
when k > 1 in Section 4. Finally, Section 5 summarizes the main results of the paper.

2. Boundary of k–M set with exponent k > 0

Falconer [14] gives the following extended M Set definition:

Definition 1. Let f 0
c ð0Þ ¼ c, f i

cð0Þ ¼ f i�1
c ð0Þ
� �2 þ c, where i is a natural number. The M set is defined by Eq. (1):
M ¼ c 2 C : f i
cð0Þ91 when i!1

� �
: ð1Þ
A definition of k–M set can be generalized from above M set definition:
Definition 2. Let f 0
c ð0Þ ¼ c, f i

cð0Þ ¼ f i�1
c ð0Þ
� �k þ c, where i is a natural number. The k–M set is defined by Eq. (2):
k—M set ¼ fc 2 C : f i
cð0Þ91 when i!1g: ð2Þ
Lemma 1. Let 0 < k < 1, all positive real numbers are in k–M set.
Proof. When 0 < k < 1 and x > 0, xk < x() x > 1, xk > x() x < 1, xk ¼ x() x ¼ 1.
In the following paragraphs, these three cases are analyzed.

(i) Case when x > 1
Let f ðxÞ ¼ xk and gðxÞ ¼ kxþ 1� k. We have f ð1Þ ¼ gð1Þ ¼ 1 as 1 ¼ 1k ¼ k � 1þ 1� k, and f 0ðxÞ < g0ðxÞ as kxk�1

< k because
when x > 1, and 0 < k < 1, xk�1 < 1.

Hence, f ðxÞ < gðxÞ when x > 1, i.e., xk < kxþ 1� k when x > 1.
The following proof is based on mathematical induction.
First, let i = 1, we have
1 < f 1
x ð0Þ ¼ xþ xk < xþ kxþ 1� k ¼ x �

X1

p¼0

ðkpÞ þ ð1� k1Þ ðx > 1; 0 < k < 1Þ: ð3Þ
Then, assume when i 6 j, we have
1 < f j
xð0Þ 6 x �

Xj

p¼0

ðkpÞ þ ð1� kjÞ: ð4Þ
Hence, let i = j + 1, we have
f jþ1
x ð0Þ ¼ f j

xð0Þ
� �k þ x 6 x �

Xj

p¼0

ðkpÞ þ ð1� kjÞ
 !k

þ x 6 k x �
Xj

p¼0

ðkpÞ þ ð1� kjÞ
 !

þ 1� kþ x

¼ x �
Xjþ1

p¼0

ðkpÞ þ ð1� kjþ1Þ: ð5Þ
From Eqs. (3)–(5), we know f j
xð0Þ 6 x �

Pj

i¼0
ðkiÞ þ ð1� kjÞ ¼ x 1�kjþ1

1�k þ 1� kj for every iteration time j.

Then, lim
j!1

f j
xð0Þ < x

1�kþ 191. Thus we can see that x is in k–M set.

(ii) Case when 0 < x < 1

From f 1
x ð0Þ ¼ xþ xk < xþ 1, we know f jþ1

x ð0Þ < f j
xðxþ 1Þ < f jþ1

xþ1ð0Þ. Then we know f jþ1
xþ1ð0Þ is not divergent from case (i).

Hence, f jþ1
x ð0Þ is not divergent. Thus, x is in k–M set.

(iii) Case when x = 1
f j
1ð0Þ ¼ � � � 1þ 1ð Þk � � �

� �k
þ 1 ¼ f j�1

1 ð2Þ. f j
1ð2Þ < f j

2ð2Þ ¼ f jþ1
2 ð0Þ. Thus it is convergent by case (i). Hence, x = 1 is in k–M

set.

From cases (i), (ii), (iii), Lemma 1 is proved. h
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Lemma 1 shows that all positive real numbers are in k–M set when 0 < k < 1 and k is a rational number. The following

Lemma 2 and Inference 1 extend the result to whole complex number plane.

Lemma 2. For any complex number z and natural number n = 1,2, . . . , jf n
z ð0Þj 6 jf n

c ð0Þj when jzj ¼ c; for any k—M set.
Proof. Considering any point z in the complex plane, we assume |z| = c.

Then, jf i
zð0Þj 6 jf i

cð0Þj can be proved by mathematical induction.

Let i = 0, we have
jf 0
z ð0Þj ¼ jzj 6 c ¼ jf 0

c ð0Þj: ð6Þ
Then, assume when i 6 n, we have
jf n
z ð0Þj 6 jf n

c ð0Þj: ð7Þ
Hence, let i = n + 1, we have
jf nþ1
z ð0Þj ¼ f n

z ð0Þ
� �k þ z
��� ��� 6 f n

z ð0Þ
�� ��k þ jzj 6 f n

c ð0Þ
�� ��k þ c ¼ f nþ1

c ð0Þ
�� ��: ð8Þ
From Eqs. (6)–(8), Lemma 2 is proved. h

The following Inference 1 extends Lemma 1 to complex number plane.

Inference 1. Let 0 < k < 1 and k is a rational number, all points in complex number plane are in k–M set.
Proof. We assume z as any complex number and |z| = c.
From Lemma 1, c is in k–M set as c is a positive real number. When f nþ1

c ð0Þ is convergent, f nþ1
z ð0Þ is convergent by Lemma

2. Hence, z is in k–M set for any point z in complex plane. h

When k = 1 and x – 0, f j
xð0Þ ¼ xðjþ 1Þ; when j ?1, f j

xð0Þ ! 1. Hence, k–M set contains only point zero when k = 1.
Now, we analyze k–M set when k > 1.

Lemma 3. Let k > 1 and k is a rational number. k–M set is bounded and the minimum absolute value of points at boundary is
ððk� 1Þ � k�

k
k�1.
Proof. The minimum absolute value c of points at boundary must satisfy equation xk þ c ¼ x; where x is extremum of
sequence of numbers defined by f 0

c ð0Þ ¼ c; f i
cð0Þ ¼ f i�1

c ð0Þ
� �k þ c.First, we prove that c ¼ ðk� 1Þ � k�

k
k�1 is in k–M set.When

k > 1, consider function gðxÞ ¼ x� xk. Let the derivative g0ðxÞ ¼ 1� kxk�1 ¼ 0, we can see that x ¼ k�
1

k�1 is the extremum of
gðxÞ. So we know that c ¼ gðxÞ ¼ xð1� xk�1Þ ¼ ðk� 1Þk�

k
k�1.Let
c ¼ ðk� 1Þ � k�
k

k�1 ð9Þ
and
1

x ¼ k�k�1: ð10Þ
We obtain Eq. (11) using Eqs. (9) and (10).
f 1
c ðxÞ ¼ xk þ c ¼ x: ð11Þ
Then, from f 2
c ðxÞ ¼ f 1

c ðxÞ
� �k þ c ¼ xk þ c ¼ x, we have f i

cðxÞ ¼ x. Hence, f i
cð0Þ < f i

cðxÞ ¼ f 1
c ðxÞ ¼ x. It means that c is in k–M set.

Then, from Lemma 2, we know that any complex number z is in k–M set when |z| < c.Then we prove that c is the lower bound
value, which means that there is at least one point z that is not in k–M set with |z| > c.Let c� ¼ c þx1 > c and there exists a
positive integer n that makes f n

c� ð0Þ ¼ xþx2 > x:To use Eq. (11) and kxk�1 ¼ 1, we prove it as follows.Let i = n + 1,
f nþ1
c� ð0Þ ¼ xþx2ð Þk þ c þx1 P xk þ c þx1 ¼ xþx1 � 1: ð12Þ
Then, let i ¼ nþm, assuming



S. Liu et al. / Applied Mathematics and Computation 220 (2013) 668–675 671
f mþn
c� ð0ÞP xþx1 �m: ð13Þ
Hence, let i ¼ nþmþ 1, we have
f mþnþ1
c� ð0Þ ¼ f mþn

c� ð0Þ
� �k þ c þx1 P xþx1mð Þk þ c þx1 P xk þ kxk�1x1mþ c þx1 ¼ xþx1ðmþ 1Þ: ð14Þ
To conclude Eqs. (12)–(14), we know when i!1, m!1, xþx1 �m!1, f i
c� ð0Þ ! 1.It means c⁄ is not in k–M set, hence, c

is the minimum boundary point.Lemma 3 is proved. h

Furthermore, considering process of proof in Lemma 3, we affirm that point z at boundary with the maximum absolute value
c must satisfy z0 ¼ ze

2npi
k ¼ zk þ z. In other words, function f maps z to z0 with same module and different modular phase angle.

Thus, it means that we can calculate z from the equation. So we reach Lemma 4.
Lemma 4. Let k > 1. The maximum absolute value of boundary points is no more than (6) 2
1

k�1.

Proof. At first, we prove 2
1

k�1 is a threshold of bound.
The solutions c of Eq. (15) are at boundary because f i

cð0Þ ¼ f 1
c ð0Þ when i > 1.
c � e2npi
k ¼ ck þ c: ð15Þ
Then we solve c � e2npi
k ¼ ck þ c with c – 0 and find the solutions are c ¼ e

2npi
k � 1

� � 1
k�1. So we have Eq. (16).
jcj ¼ e
2npi

k � 1
��� ��� 1

k�1
6 2

1
k�1ðn 2 NÞ: ð16Þ
We assume that k=p/q is irreducible, it makes e
2npi

k ¼ e
2qnpi

p . So when p is even, let n=p/2, we have e
2npi

k ¼ eqpi. Then, let q is
odd, we have eqpi=-1 and |c|=2

1
k�1. On opposite side, when p is odd, we know there exist u and v make pu+qv=1. So when we

set n=vn1, we find Eq. (17).
2qn ¼ 2qvn1 ¼ 2n1ð1� puÞ;
2qn

p ¼
2n1

p � 2un1:
ð17Þ
Then we reach Eq. (18) from Eq. (17).
e
2npi

k ¼ e
2qnpi

p ¼ e
2n1

p �2un1

� �
¼ e

2n1pi
p : ð18Þ
In other words, when n1 ¼ p�1
2 or pþ1

2 as well as n ¼ v p�1
2 , we find Eq. (19)
Solutionmax ¼ 2
1

k�1 � sin
p� 1

2p
p

	 
 1
k�1

: ð19Þ
Then, we prove that a point z with jzj > 2
1

k�1 is not in k–M set.
When we assume jzj ¼ 2

1
k�1þ (e > 0), we use mathematical induction to prove it.

Let i = 0, we get Eq. (20).
jf 0
z ð0Þj ¼ jzjP 2

1
k�1 þ e � 2k� 1ð Þ0: ð20Þ
Then, let i = j, assuming
jf j
zð0ÞjP 2

1
k�1 þ e � 2k� 1ð Þj: ð21Þ
Hence, let i = j + 1, we reach Eq. (22)
jf jþ1
z ð0Þj ¼ j f j

zð0Þ
� �k þ zjP jf j

zð0Þj
k � jzjP 2

1
k�1 þ e � 2k� 1ð Þj

� �k
� 2

1
k�1 � e: ð22Þ
Using Newton Binomial theorem, we find Eq. (23). In this formula, R > 0 is remainder term.
2
1

kþ1 þ e � 2k� 1ð Þi
� �k

� 2
1

k�1 � e ¼ ð2
k

k�1 � 2
1

k�1Þ þ 2ke � 2k� 1ð Þi � eþ R P 2
1

k�1 þ 2ke � 2k� lð Þi � e

P 2
1

k�1 þ 2ke � 2k� 1ð Þi � e � 2k� 1ð Þi ¼ 2
1

k�1 þ e � 2k� 1ð Þiþ1
: ð23Þ
When applying Eq. (23) into Eq. (22), we have Eq. (24).
jf jþ1
z ð0ÞjP 2

1
k�1 þ e � 2k� 1ð Þiþ1

: ð24Þ
From Eqs. (21), (22), and (24), we have Eq. (25).
lim
i!1
jf i

zð0ÞjP 2
1

k�1 þ e � lim
i!1

2k� 1ð Þi ¼ 1ð2k� 1 > 1Þ: ð25Þ
It means z is out of k–M set.
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To conclude, Lemma 4 is proved. h

Then we gain Theorem 1 from Lemmas 1–4 and Inference 1. Theorem 1 is boundary conclusion of k–M set with exponent
k > 0.

Theorem 1. Domain of k–M set with exponent k depends on k by k > 0 as below:

(a) Domain of k–M set contains complex plane when 0 < k < 1.
(b) Domain of k–M set contains only point origin (zero) when k = 1.
(c) To set point origin center point, maximum radius of k–M set is Rmax ¼ 2

1
k�1 when k > 1.

(d) To set point origin center point, minimum radius of k–M set is Rmin ¼ ðk� 1Þ � k�
k

k�1 when k > 1.

Items in Theorem 1 show domain and radius of k–M set. These items are all proved in lemmas and inference above. Then
we can find Inference 2 from Theorem 1.

Inference 2. The extremum of k–M set is a circle with center origin and radius 1 when exponent k?1.
Proof. We know lim
k!1

2
1

k�1 ¼ lim
n!1
ðk� 1Þ � k�

k
k�1 ¼ 1. Moreover, ðk� 1Þ � k�

k
k�1<1<2

1
k�1. So Inference 2 is proved. h

This is results of domain and bound of k–M set when k > 0. Later we will study k–M set with k < 0 in Section 3.

3. Boundary of k–M set with exponent k (k < 0)

Similar to proof in Section 2, we find bound of k–M set by considering k in two ranges, which are k < �1 and �1 6 k < 0.
When k < �1, we present Lemma 5 to show convergence about k–M set.

Lemma 5. Let k 6 �1, all positive real numbers are in k–M set.
Proof

(i) c P 1
It is known that 0 < ck

6 1 when c > 1. Then, when we see 1 < c < xk + c < c + 1 when x > 1 and c > 1, we know that
f iþ1
c ð0Þ ¼ f i

cð0Þ
� �k þ c < c þ 1. Moreover, f i

1ð0Þ ¼ f i�1
1 ð2Þ > 1, which means that c is in k–M set when c P 1.

(ii) 0 < c < 1
When we assume that there exists i making f i

cð0Þ > 1, we find f iþ1
c < c þ 1. It means c is in k–M set. When there does

not exist i making f i
cð0Þ>1, besides f i

cð0Þ > 0, we know that c is also in k–M set.

Summarizing cases (i) and (ii), Lemma 5 is proved. h

So with the similar idea in Inference 1, we have Inference 3 that applied to all points in complex plane.

Inference 3. Let k < �1, k–M set contains all complex plane.
Proof. As we known, f i
cð0Þ is finite when c is a positive integer. We set jf i

zð0Þj ¼ ci and find Eq. (26).
ciþ1 ¼ jf iþ1
z ð0Þj ¼ j f i

zð0Þ
� �k þ zj 6 jf i

zð0Þj
k þ jzj ¼ ck

i þ c1: ð26Þ
So we know that limi!1ci–1. Otherwise, limi!1ciþ1 6 limi!1ck
i þ c1 ¼ c1–1. It is based on reduction to absurdity.

So we know that Inference 3 is proved. h

Then we study k–M set with �1 6 k < 0. At first, we know that ciþ1 6 ck
i þ c1 from Inference 2 by considering jf i

zð0Þj ¼ ci.
When we study it with similar idea in inference 2, we reach Inference 4. It shows that k–M set contains all complex plane
when �1 6 k < 0.

Inference 4. Let �1 6 k < 0, k–M set contains all complex plane.

So we find that k–M set contains whole complex plane when k < 0 from Lemma 4 and Inference 2 and 3. It means that
symmetry characteristics we have to study only apply to case k > 1 of k–M set. Next we will find some symmetry character-
istics of k–M set with k > 1 in Section 4.
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4. Symmetry characteristics of k–M set with exponent k (k>1)

As we know, fractals of k–M set with integer exponent n, which is called n–M, show their symmetry by n > 2. But there is
no proved conclusion about k–M set when exponent k is not integer. In this section, we will prove the symmetry and other
fractal characteristics of k–M set when k is positive.

Firstly, we know that k–M set are axial symmetrical about real axis because �zk þ �C ¼ Zk þ �C ¼ Zk þ C for any z and c in
complex plane. Then, when rational number k = p/q (p and q are irreducible), we reach Theorem 2.

Theorem 2. Number of isomorphic subset clusters in k–M set is p-q.
Proof. At first, we explain that when we say k–M set has p–q isomorphic subset clusters, if and only if, we prove all points z
in one subset clusters of k–M set, there are p–q–1 other points zi in other p–q–1 subset clusters with same modular in k–M
set which are iterated to same modular and phase angle except origin in complex plane. In other words, if jf p

z ð0Þj ¼ jf p
z1
ð0Þj

and f p
z ð0Þ has same different phase angle to f p

z1
ð0Þ, we call z and zi are isomorphic. Isomorphic clusters are make up of all iso-

morphic points.
For each point z ¼ r � ehi in k–M set, if there exist z1 ¼ r � eh1 i makes jf p

z ð0Þj ¼ jf p
z1
ð0Þj when p>0, it means that we find an

isomorphic point of z. To solve this equation, we first solve equation jzk þ zj ¼ jzk
1 þ z1j. To predigest it, we get Eq. (27).
Fig. 1.
center 0
rk�1 � eðk�1Þhi ¼ rk�1 � eðk�1Þh1 i: ð27Þ
To solve Eq. (27), we find Eq. (28).
h ¼ h1 þ
2np
k� 1

ðn ¼ 1 � k� 1Þ: ð28Þ
Applying k=p/q in Eq. (28), we have Eq. (29).
h ¼ h1 þ
2qnp
p� q

: ð29Þ
Furthermore, difference between phase angles is h� h1.
Then, when we get Eq. (31) from Eq. (30).
f p
z ð0Þ ¼ f p

z1
ð0Þ � e2np

k�1i: ð30Þ
A drawn k–M set by classic method. Parameter k in (a)–(c) is 3.5, 4.5 and 5.5. Parameter k in (d)–(f) is 3.5. In (a)–(c), displayed areas are 3 � 3 with
. In (d)–(f), displayed areas are 1 � 1 with center e

0pi
5 , e

2pi
5 and e

4pi
5 .
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f pþ1
z ð0Þ ¼ f p

z ð0Þ
� �k þ z ¼ f p

z1
ð0Þ

� �k
� e2knp

k�1 i þ z1 � e
2np
k�1i ¼ ð f p

z1
ð0Þ

� �k
þ z1Þ � e

2np
k�1i ¼ f pþ1

z1
ð0Þ � e2np

k�1i: ð31Þ
It means that our assuming is true. Furthermore, we can calculate the number of isomorphic points of z. To use k = p/q in
Eq. (31), we get z ¼ z1 � e

2qnp
p�q . It means that z and zi are isomorphic when n = 1 � p–q.

Based on all above, Theorem 2 is proved. h

Then, we have to say that there are some minor errors in some thesis that draws fractal figures of k–M set by using com-
puter. The errors are caused by calculation. When we calculate a point z in complex variable function, we also change the
point z to complex exponent form that is used to operate. But in calculation, computer will translate it into form a + bi to
operate. Then some values would be changed. The difference between the results calculated by these two kinds once is

e2mph, and the results of following mappings will be wrong. For example, when a computer calculates eð
ap
b Þi�

b
a , the result is cor-

rect. However, when it calculates eð
ap
b Þi

� �b
a, the result is always wrong. Then, the resulting mapping will be always false.

For example, we use k = 3.5 to validate it. In this case, p = 7, q = 2. So we get minimum and maximum radius are 5
7 � 2

7

� �2
5 and

2
2
5. We validate our opinion by use Fig. 1. In Fig. 1a–c, we create some classic k–M set with p = 7, 9, 11 and q = 2. We can see

generation of k–M set by k increase by compare Fig. 1a to b and c. But just in another example in Fig. 1d, e and f, we trust
there are 7 � 2 = 5 isomorphic parts in fractal figure of 3.5-M set. Then we use a point to execute an experiment in Fig. 1. As
we seen, a point z ¼ e pi

3:5�1 ¼ e
2pi
5 is absolutely in k–M set. Moreover, it is 2-periodic point because z

7
2 þ z ¼ 0. So in our idea, we

trust e
4pi
5 ; e

6pi
5 ; e

8pi
5 ; e2pi are all 2-periodic points. But in Fig. 1d–f, which is drawn by classic method, it is not suitable. In fact,

center point in ‘d’ and ‘e’ are convergence, but ‘f’ are divergence. It validates our conclusion.
In fact, when we calculate these points in k–M set, we find they are all 2-periodic points. For example, let z ¼ e1:2pi �

-0.8090-0.5878i, z3:5 þ z ¼ zðz2:5 þ 1Þ ¼ zðz3pi þ 1Þ ¼ 0, then the other points make z3:5 þ z ¼ 0. This is also a validation of
our idea. Additionally, if there are some isomorphic subsets with different period m and n overlapped, it means these parts
have both characteristics both of periods m and n. The conclusion is absurd when m and n are irreducible. So we conjecture
that all periods are disjunctive in k–M set. This is equivalent to that radii of all periodic areas are less than p

p�q when we as-
sume a periodic area is an isomorphic circle.

Conjecture 1. Assuming a periodic area is a isomorphic circle, radii of periodic areas are less than p
p�q.

Admittedly, our idea considers the complex plane as composed by plane-layers with phase angle range [2np,2np + 2p).
When considering complex plane that does not consist of plane-layers with phase angle more than 2p, we should subtract
some boundary points from Theorem 2.

5. Conclusion and future work

We analyzed k–M set when k is rational number in this paper. We first computed bounds of k–M set and proved its sym-
metry is determined by k = p/q when p and q are irreducible. Then, we proved k–M set contains whole complex plane when
k 6 1. In other words, k–M set has no bound when k 6 1. Next, except for some classic figures of k–M set, we found that k–M
set can be divided into p–q isomorphic parts. Of course, these parts cannot overlap with each other. Finally, we give a con-
jecture to find bound of periodic subsets.

Our future work can be conducted in two steps. At first, we will find a new computational algorithm in complex plane.
This algorithm is used to find correct results of exponent calculation in complex plane. We will design the algorithm to avoid
phase angle errors by considering intermediate results in computing process. Secondly, we will improve our design. We can
assume complex plane is constructed by plane layers of phase angle ranges of [2np,2np + 2p) where n = 1,2 . . . A mapping
will be executed from one plane layer to another. All plane-layers form the whole perfect complex plane.
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