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Abstract— This paper presents a compact customised neural 
network with 44 parameters for hand gesture recognition based 
on electrical impedance tomography (EIT) using a flexible 8-
electrode band. The classification accuracy is improved by 
assigning higher weights to the impedances captured closer to 
the current injection position. The non-fully connected layer 
working as a spatial filter reduces the complexity of the network 
structure. Validated on a discrete EIT system, the proposed 
network structure can distinguish eight gestures with an 
accuracy of 99.49%. Towards a low-power wearable design, an 
analogue inference circuit based on the proposed network 
structure was also designed in 65 nm CMOS. The system 
features a low-power multi-output digital-to-analogue converter 
(DAC) to provide data for the analogue computation efficiently. 
This designed CMOS analogue inference has a recognition 
accuracy of 98.13%. 

Keywords—Analogue computation, electrical impedance 
tomography, hand gesture recognition, neural network. 

I. INTRODUCTION 
Electrical impedance tomography (EIT) has been 

extensively developed for hand gesture recognition, providing 
information on muscle contraction and bone movement [1]-
[8]. This technique allows a human-machine interface (HMI) 
to control a robotic hand or prosthesis [1]. It also has potential 
for applications in virtual reality interaction, sign language 
recognition and intelligent robot control. 

Unlike conventional EIT, which uses an inverse solver to 
produce images, EIT-based HMI employs recognition 
algorithms to link the data to, for example, hand gestures. 
Current recognition algorithms can be divided into two main 
categories. (i) image-based: convolution neural network 
(CNN) is employed to classify the EIT image reconstructed 
by finite element method [2], [5]; and (ii) non-image based: 
the impedance data is directly provided to machine learning 
algorithms, for example, support vector machine (SVM), k-
nearest neighbours (KNN) and decision tree (DT) [1], [6]. 
These algorithms are designed to run on a standard personal 
computer (PC) and are generic in nature. Implementing them 
on a wearable edge computing device for extended periods of 
use poses a significant challenge regarding power and 
hardware resources.  

In addition, using a high number of electrodes provides 
higher recognition accuracy but at the expense of hardware 
resources. Common electrode configurations worn on the 
forearm have a single 8-electrode band [1]-[3], a single 16-
electrode band [4], [5] or two bands each with 8 electrodes [6]. 
Some studies also investigated electrodes attached directly to 
the back of the hand for better selectivity [7]. 

Analogue signal processing (ASP) applied successfully to 
machine learning systems can achieve much higher energy 
efficiency compared to their digital counterparts [9]. In order 
to do so, energy-efficient analogue computations exploit the 
characteristics of transistors operating in the subthreshold 
region [10]. Currently, mixed-signal systems are the dominant 
approach. For instance, in [9], a mixed-signal architecture was 
proposed where analogue computation was used for 
mathematical operations such as multiplication, square root, 
and Gaussian function. On the other hand, in [11], a dual-
mode architecture was proposed in which digital and analogue 
modules in the machine learning system were switched 
depending on the scenario. 

This paper presents the design of a compact, lightweight 
neural network optimised for EIT datasets applied to hand 
gesture recognition. The work consists of three main parts. (i) 
Design of an EIT-based HMI system with 8 electrodes for data 
capture, as shown in Fig. 1. The EIT data is captured using a 
high-performance system that can record 256 bioimpedance 
features every 10 ms [12]. (ii) Analysis of the captured 
bioimpedance features to design a lightweight neural network. 
The proposed network only requires 33 weights and 11 biases 
compared to other networks [2], [5] that have thousands of 
parameters. (iii) Based on the designed compact neural 
network, an inference engine was implemented in TSMC 65 
nm CMOS technology using ASP to reduce power 
consumption and computational resources.  

The rest of the paper is organised as follows. Section II 
describes the structure of the compact neural network and its 
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Fig. 1. Hand gesture recognition system based on bioimpedance 
measurement. 
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performance. Section III presents the analogue integrated 
circuit implementation of the neural network. Conclusions are 
drawn in Section IV. 

II. NEURAL NETWORK STRUCTURE 
For general neural network applications, standard layers 

with numerous parameters of different types of neural 
networks are often used and trained with significant power and 
time resources. In contrast to this time and energy-consuming 
process, the approach proposed in this paper starts with 
reducing the number of parameters through processing the 
EIT data.  

To achieve good resource efficiency, only 49 impedance 
features captured from 8 electrodes on a stretchable band were 
used in this work. In Fig. 2(a), one frame of impedance data is 
obtained from the EIT system. The seven elements in each 
column vector in the input frame are impedance values from 
all adjacent electrodes at each current injection position 
obtained using in-phase and quadrature-phase (I-Q) 
impedance demodulation. The impedance associated with 
electrodes used for current injection is set to zero in the input 
frame, because only voltages from the recording electrodes are 
used in EIT. 

The closer the electrode is to the position where the current 
is injected, the higher the signal-to-noise ratio of the voltage 
recorded because of the higher current density. Leveraging 

this unique EIT pattern, a decay filter is proposed to provide a 
higher weight to the impedance derived from the position 
closer to the current injection position. After filtering the 
undesired impedance features, seven values are obtained by 
summing up each row as the input for the neural network. A 
non-fully connected layer, inspired by the bandpass spatial 
filtering of the retina [13], followed by a fully connected layer 
with eight outputs, is introduced to reduce the complexity of 
the connection between two layers and the redundancy of 
features. The structure from local impedance features to final 
prediction consists of 11 identical units, each with three inputs 
and one output, as shown in Fig. 2(c), which can better 
facilitate the design of the analogue inference.  

To validate the proposed neural network structure, an EIT 
dataset was captured. It contains data from five subjects (4000 
frames each), which was used to find the optimal weights in 
the decay filter. The dataset included eight gestures, as shown 
in Fig. 2(d), and a parameter D ranging from zero to one is 
defined as the base of a power. 70% of the dataset is used for 
training, 15% for test and the remaining 15% for validation. 
The recognition accuracy is plotted in Fig. 2(b) as parameter 
D varies. It can be seen that gesture recognition accuracy 
increases as parameter D decreases. When D is less than 0.4, 
the accuracy of the proposed neural network exceeds 99%. 

 
 

Fig. 2. The proposed compact neural network for hand gesture recognition. (a) Neural network architecture. (b) Effect of filter weight on accuracy. 
(c) Simplified network with identical nodes. (d) Eight hand gestures. 
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III. CMOS IMPLEMENTATION OF NEURAL NETWORK 

A. Nodes in Neural Network 
The nodes with three inputs shown in Fig. 2(c) can be 

implemented in the CMOS for low power consumption. This 
design adopts current mode translinear circuits as analogue 
multipliers to calculate the input times weight. Owing to the 
fixed output current direction, the rectified linear unit (ReLu) 
activation function is naturally applied to the output. The 
inputs and parameters are saved in an SRAM array in 8-bit 
format with one sign bit, as shown in Fig. 3(b), and then they 
are converted to current signals by a current mode digital-to-
analogue converter (DAC). For the hidden layer nodes, three 
inputs, three weights and one bias are required. For the output 
layer nodes, only three weights and one bias are needed. Inside 
the hidden layer nodes, the output current is converted into 
bias voltages of the cascode current mirror for front 
propagation, with minimal loss to the signal due to the 
capacitive load. The parameters are stored locally in the nodes 
for easy access during parallel computing.  

As shown in Fig. 4, when the input and weight increase 
simultaneously, the output current gradually plateaus because 
the large current forces the transistors' gate-to-source voltage 
(VGS) close to the threshold voltage. The output characteristic 
no longer follows the well-known exponential law. 
Nevertheless, the non-linearity of the output current, treated 
as an activation function, is consistent with the dynamic model 
of real neurons and has minimal influence on the accuracy of 
prediction. 

B. Current Mode Digital-to-Analogue Converter 
To provide 44 parameter currents and 7 input currents 

simultaneously for parallel computing, a compact multi-bias 
DAC is proposed and shown in Fig. 5(a). The currents of 
inputs or parameters are generated by summing the selected 
currents among the eight reference currents. The reference 
currents are generated by eight pairs of identical transistors 
biased by different voltages. When transistors are in the 
subthreshold region and VDS > 4Ut , where Ut  is the thermal 
voltage, IBIT<0> can be defined as 

IBIT<0> = I0 exp( VBIASBOT<0>
nUt

)                      (1) 

where I0  is W/L times characteristic current ID0 , and 
n = 1+ CD Cox⁄  is the slope factor [10]. Thus, the ith reference 
current can be ideally expressed as 

IBIT<i> = 2i × IBIT<0> = I0 exp( i ln2×nUt+VBIASBOT<0>
nUt

).  (2)                              

Hence, the bias voltages can be given as 

VBIASBOT<i> = i ln2×nUt+VBIASBOT<0>.            (3)                                    

It is demonstrated that the eight pairs of bias voltages can 
be obtained by equally dividing the voltage between 
VBIASBOT<7>  and VBIASBOT<0> . The voltage difference 
between adjacent bias voltages is 

  VBIASBOT<7> - VBIASBOT<0>
7

 = ln2×nUt.                (4) 

When VBIASBOT<0>  is set to 240 mV, IBIT<0>  is 
approximately equal to 0.7767 nA. VBIASBOT<7>  is 
implemented by 128 times IBIT<0> generated by the current 
mirrors. The large resistance of these series resistors is 
required to reduce the current between two reference voltages. 
The transistors operate as resistors accordingly while saving 
area. The transistors' gate and drain are connected, and the 
body is connected to the source. Cascode current mirrors with 
two resistor voltage dividers are adopted to improve the 
uniformity of voltage division, as shown in Fig. 5(b). The bias 
voltages generated from two voltage dividers are shared with 
all current sources in the hidden layer and the output layer. 
This power-efficient and area-friendly digital-to-current 
method combines the merits of stable digital memory and low-
power analogue computation. However, the reference currents 
cannot strictly follow (2) due to nonidealities. The INL and 
DNL of the DAC are shown in Fig. 5(c). However, these 
nonidealities will not significantly impact the accuracy of the 

 
 

Fig. 3. Node structure. (a) Schematic of node. (b) Data saved in each node of hidden layer. 
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Fig. 4. Characteristics of the analogue current weighting. 
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analogue network. In terms of response time, the longest setup 
time is around 182 ns, which is sufficient for the frame rate of 
the EIT system, as shown in Fig. 5(d). Lastly, the reference 
currents can be further scaled down to reduce power 
consumption but at the expense of accuracy, as shown in Fig. 
5(e).  

C. Analogue Neural Network 
Using the node design in Fig.3 and the DAC in Fig.5, a 

compact analogue neural network was implemented 
following the structure shown in Fig. 2(c). A winner-take-all 
circuit is used as the output layer, and its current outputs can 
be used to present the gesture outcome. The accuracy of the 
analogue inference is 98.13%, with a typical power 
consumption of 20 µW. A comparison against the state of the 

art is presented in Table I. This work achieves comparable 
accuracy using a significantly smaller number of neural 
network parameters. 

IV. CONCLUSION 
This paper has proposed an efficient method to scale 

down the size of the neural network for bioimpedance-based 
hand gesture recognition. Using the data captured from a 
discrete EIT system, the proposed neural network is first 
validated on MATLAB. It can classify eight hand gestures 
with an accuracy of 99.49%. In addition, an analogue 
inference has been designed in CMOS technology. This 
inference features a low-power analogue node and multi-
output DAC. The accuracy of this implementation is up to 
98.13%, with a power consumption of 20 µW. Future work 
will focus on developing an on-chip training method to 
compensate for process, supply voltage and temperature 
(PVT) variations for the analogue neural network. 
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