SPECIAL SECTION ON SMART CACHING, COMMUNICATIONS, COMPUTING
AND CYBERSECURITY FOR INFORMATION-CENTRIC INTERNET OF THINGS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 29, 2019, accepted July 12, 2019, date of publication July 25, 2019, date of current version August 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931061

Finding Sands in the Eyes: Vulnerabilities
Discovery in loT With EUFuzzer on

Human Machine Interface

JIAPING MEN"'!, GUANGQUAN XU"“23, (Member, IEEE), ZHEN HAN', ZHONGHAO SUN?,
XIAOJUN ZHOUS, WENJUAN LIAN®, AND XIAOCHUN CHENG’, (Senior Member, IEEE)

!Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, School of Computer and Information Technology, Beijing Jiaotong University,

Beijing 100044, China
2Big Data School, Qingdao Huanghai University, Qingdao, China

3Tianjin Key Laboratory of Advanced Networking (TANK), College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
“#National Computer Network Emergency Response Technical Team/Coordination Center of China, China

SInstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China

6College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
"Department of Computer Sciences and Faculty of Science and Technology, Middlesex University, London NW4 4BE, U.K.

Corresponding author: Zhonghao Sun (sunzhonghao@cert.org.cn)

This work was supported in part by the Natural Science Foundation of China under Grant U1736114 and Grant U1736115, and in part by

the CNCERT/CC under Grant K19GY500020.

ABSTRACT In supervisory control and data acquisition (SCADA) systems or the Internet of Things
(IoT), human machine interface (HMI) performs the function of data acquisition and control, providing
the operators with a view of the whole plant and access to monitoring and interacting with the system. The
compromise of HMI will result in lost of view (LoV), which means the state of the whole system is invisible
to operators. The worst case is that adversaries can manipulate control commands through HMI to damage
the physical plant. HMI often relies on poorly understood proprietary protocols, which are time-sensitive, and
usually keeps a persistent connection for hours even days. All these factors together make the vulnerability
mining of HMI a tough job. In this paper, we present EUFuzzer, a novel fuzzing tool to assist testers in HMI
vulnerability discovery. EUFuzzer first identifies packet fields of the specific protocol and classifies all fields
into four types, then using a relatively high efficiency fuzzing method to test HMI. The experimental results
show that EUFuzzer is capable of identifying packet fields and revealing bugs. EUFuzzer also successfully
triggers flaws of actual proprietary SCADA protocol implementation on HMI, which the SCADA software

vendor has confirmed that four were zero-day vulnerabilities and has taken measures to patch up.

INDEX TERMS Protocol format parsing, vulnerability mining, fuzzing test, HMI security, [oT.

I. INTRODUCTION

In SCADA system, PLCs (Programmable Logic Controllers)
are connected to a central control terminal (i.e., the HMI)
through which operators can supervise and control the sys-
tem. It is necessary to maintain the proper functioning of
SCADA system, especially the HMI, which is essential to
ensure the safe and reliable operation of the critical infrastruc-
ture. Experimental results showed that SCADA equipment
can be crashed easily even by randomly assembled inputs, not
to mention some well-designed data packets. To make things
worse, HMI has its own inherent flaws, including design

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Wu.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

and implementation of vulnerabilities, such as no commu-
nication authentication and input verification, which makes
HMI vulnerable to attacks. Some possible attack scenarios
are: 1)Disclosure of sensitive data; 2)Lost of View; 3)Remote
commands execution.

Security vulnerabilities typically arise from incomplete
design and/or poor implementation, which is true for the
protocols used in SCADA systems. Securing HMI requires
testing for such vulnerabilities. Fuzz-testing is a widely-used
security assessment method to discover bugs of input valida-
tion and the application logic by passing crafted hostile inputs
to the communication target. However, using fuzz-testing
methodologies in HMI vulnerability discovery is difficult.
HMI has the following characteristics:

103751

https://orcid.org/0000-0002-6644-8348
https://orcid.org/0000-0001-8701-3944

IEEE Access

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

1) HMI usually supports several industrial protocols, such
as Modbus-TCP, IEC61850 and even some proprietary
protocols.

2) HMI performs real-time communication, and the ses-
sion effective time is very short. What’s more, HMI
usually keeps a persistent TCP/IP connection for hours
even days to periodically acquire real-time data of the
field equipment, differing from normal communication
between client and server.

3) To communicate with HMI continuously, the values
of some fields within the packets need to be changed
accordingly. For example, the sequence number should
be in an ascending order by adding one at a time and the
length fields need to be recalculated in every reassem-
bled packet.

4) The packets passing to HMI should pass through simple
validation check and reach the internal processing logic
before they are rejected.

However, most of the current fuzzing methods work better
when detailed protocol specifications are available. When
facing proprietary protocols, they cannot even establish con-
nections with the target. What’s more, most of these fuzzing
tools act as clients only testing servers (i.e., PLCs). Some
fuzzing tools work inline between HMI and PLC, performing
two-way testing, but experimental results have shown that the
efficiency and precision are not satisfactory [1].

In this paper, we have made great improvement to
the fuzzing method in vulnerability discovery on HMIL.
We present EUFuzzer (called Easily-Using-Fuzzer), an appli-
ance designed to effectively perform fuzzing test on HMI.
EUFuzzer differs from other fuzzers in the following aspects
and can be applied in fuzzing HMI of high efficiency, which
is also the innovation and contribution of EUFuzzer.

1) Input. The input of EUFuzzer is not protocol specifica-
tion, but the original packets. Thus EUFuzzer is avail-
able in fuzzing protocols both public and proprietary.
EUFuzzer identifies packet fields of a specific protocol
and divides these fields into four types: constant fields,
session-related fields, length fields and mutable fields.

2) Assembling Packets. EUFuzzer only assigns the value of
mutable fields with elaborately constructed data. Thus
EUFuzzer has a rapidly assembling process and within
the validity time window of the SCADA protocol. For
the other three kinds of fields, EUFuzzer fills them
accordingly. For instance, the session-related fields will
be changed according to different sessions; the length
fields will be recalculated; while constant fields remain
the same within all packets. As a result, test suite is
relatively small and the majority of these crafted packets
can pass through the validation check and reach the
internal processing logic of HMI.

3) Communication. EUFuzzer communicates with HMI
directly rather than inline, and keeps a persistent con-
nection until a crash occurs.

EUFuzzer provides 26 different mutators to perform the
mutation according to the data types, whether it is number,

103752

string or array. Simultaneously, EUFuzzer closely monitors
the state of HMI. Once HMI crashes or something abnormal
happens, EUFuzzer will keep a log of the session and throw
an exception to the tester. In general, when a fuzzer displays
an error that contains a vulnerability, it will declare success.
However, for critical infrastructure, the definition of success
will be broader: discovering software errors that could cause
any disruption or disturbance. We care about all interruptions
and disturbances, because any interruption can affect the
stability of the whole system [2].

The remainder of this paper is organized as follows.
Section II gives an overview of previous work. After pre-
senting the architecture of EUFuzzer in detail in Section III,
we conduct experiments to verify the validity of EUFuzzer in
Section IV. Concluding remarks follow in Section V.

Il. RELATED WORK

Fuzz-testing is a popular and effective choice for vulner-
abilities mining. Since Miller [3], [4] firstly introduced the
fuzzing technique in 1990, Fuzzing has been part of the
overall quality assurance employed by many big companies,
such as Adobe [5], Microsoft [6], and Google [7], as well as
by security companies and consultants.

Proell [8] discovered that SCADA equipment can be
crashed easily even by randomly assembled inputs, not to
mention some well-designed data packets. There are some
popular and widely used open source fuzzing tools, such as
PeachFuzzer [9], Sulley [10], SPIKE [11], ProFuzz [12] etc.
These tools have made a great contribution to vulnerability
mining, but they all have limitations in the SCADA sys-
tems. The main drawback of these tools is that the tester
must have some prior knowledge of the protocol under
test, which is not always true. For fuzzing non-proprietary
SCADA protocols, there also exist some commercial tools,
such as Wurldtech Achilles Platform and Codenomicon
Defensics, both of which are prestigious. The former is a
testing, validation and certification platform for industrial
devices, while the latter is a world famous fuzzing tool.
These two tools represent the most advanced fuzzing tech-
nology in use and are widely used in industrial systems, but
they do not have a good support of proprietary protocols
in SCADA systems. Ganesh Devarajan has improved the
open source Devarajan [13] fuzzing tool and released new
fuzzing modules for DNP3, ICCP and Modbus. SecuriTeam
extends its commercial suite, beSTORM fuzzer [14], to sup-
port DNP3 fuzz testing. Bond et al. developed the ICCP
test commercial tool suite called ICCPSic [15]. In addition,
Mu Dynamics has developed the Mu Test Suite [16] for
fuzzing of IEC61850, Modbus and DNP3, which are standard
industrial protocols. In academic circles, many researchers
have made great efforts to improve the fuzzing efficiency.
Nick Stephens et al. present Driller [17] to augment fuzzing
through selective symbolic execution. Haller et al. invent
Dowser [18], using static analysis to identify regions of code
that are likely to lead to a vulnerability involving a buffer
overflow. Maverick Woo et al. find a more efficient fuzzing

VOLUME 7, 2019

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

IEEE Access

scheduling algorithm [19]. Rebert et al. has made a great
contribution to optimize the seed selection for fuzzing [20].
However, these tools above are not specially for SCADA test-
ing. Henrique Dantas et al. introduce eFuzz [21], to perform
fuzz testing for DLMS/COSEM electricity meters. There also
exist work on static or dynamic analysis for the detection
of malicious applications [?], [22]-[28]. Intrusion detection
or anomaly detection of user behaviors, program behaviors
or network traffic behaviors in related work [29]-[34] also
provide useful inspiration for the design and the development
of the experiments in this paper.

Usually, most existing fuzzing tools can only test against
the servers, while in the industrial control system, clients
such as HMI are in a security blind spot. The reason is that
when designing the fuzzing tools, manipulated packets are
sent to the server-specific IP address and port. But they cannot
send targeted response packets according to the received
packets from the client. What’s more, the time-sensitive,
session-oriented nature of many SCADA equipment requires
fuzzer to perform in high-speed within the time limits. As a
result, some inline fuzzer have been developed. QueMod [35]
transmits random data or makes random mutations, whose
efficiency and accuracy is extremely low. Rebecca Shapiro
et al. has created a tool—IZFuzz [1], [36], an inline tool using
arp spoofing to test the proprietary protocol, which is claimed
to be the first inline fuzzer that goes beyond random strings
and mutations. However, LZFuzz is simple and error prone.

1Il. DESIGN OF EUFUZZER

The better a protocol is modeled, the more chances are to
reveal vulnerabilities. On the other hand, the complexity of a
data model significantly influences the run-time of a fuzzing
process. This is the key factor for the success of a good fuzzer.
Before the application logic of the target software is reached,
the packets sent by the fuzzing tool usually need to be pro-
cessed multiple times [2]. In order to reach the application
processing logic, the input must meet the check condition as
much as possible so it can pass through the simple verification
in the early stage; in order to trigger the possible error,
the input needs to be manipulated to a degree. In order to
have a clear fields identification, we take advantage of the
algorithms found in the bioinformatics field(See in III-A).
And we describe the architecture of EUFuzzer in detail
in I1I-B.

A. THEORETICAL BASIS

Very short or very similar sequences can be aligned by hand
easily. However, most packets of a protocol are of great length
and highly variable that cannot be aligned solely by human
efforts. Therefore we turn to sequence alignment [37] for
help. Sequence alignment is aligning two strings from begin-
ning to end. If the two sequences are already considered to be
similar, then a global alignment algorithm is used. Because
local alignment algorithm inserts too many gaps, the aligned
segments will lose their original meaning. So we make some
assumptions that the request packets have almost the same

VOLUME 7, 2019

structure of a specific protocol, and so do the response pack-
ets. We don’t handle some very peculiar protocols whose
packet structure is dynamically changing. Fortunately, for the
sake of convenience and easy of use, the protocols in SCADA
systems are typically clear and clean, including proprietary
protocols. Marshall et al. use bioinformatics algorithms in
Protocol Informatics project [38], which attempts to identify
protocol fields in poorly network protocols. And we are
inspired by the endeavour of Weidong Cui et al.,who uses
bioinformatics algorithms to identify the fields of packets
and replay attacks and multi-stage infection process [39]. The
application of sequence alignment is detailed in Section III-B.

B. ARCHITECTURE OF EUFUZZER

The basic idea of the EUFuzzer is straightforward: given
some samples of an application session, EUFuzzer identi-
fies fields in the ADUs and adjusts the mutable fields in a
controlled way before sending the response packets. It plays
the role of server in the C/S architecture in SCADA systems,
e.g. PLCs, communicating with HMI directly. The work of
EUFuzzer can be divided into two stages: identification stage
and fuzzing stage. The identification stage is off-line and
the fuzzing stage is on-line. The architecture of EUFuzzer is
illustrated in Fig.1.

Stage 1: Identification Stage Stage 2: Fuzzing Stage

BE} sz S5 (s
Packe H
Filter Sequence Packet] packets
Fields
Pakcets Alignment . . Assembling
Identificationi

FIGURE 1. The architecture of EUFuzzer.

523

[Agent
o

522

Test
Strategies

System
Under
Test

1) STAGE 1: IDENTIFICATION STAGE
In the identification stage, EUFuzzer needs to parse the
network pcap fields, filters the dialogs of the protocol and
removes the irrelevant packets. Then EUFuzzer identifies the
four types of fields within the packet.

S1-1: Filter Packets.

First, we filter the pcap files from the wireshark or tcp-
dump, selecting the packets of the protocol that will be han-
dled later. In our experiments, we use regular expression of
“tcp.port == PORT && ip.host == HOST”, indicating the
port and IP address. After that, we will get a clean sample
of a particular protocol. Then, we gather the requests and
the responses respectively. After that, we get the original
packets. We use two sessions as a sample in the following
section.

S1-2: Sequence Alignment.

The cornerstone of our processing method is to compare
a series of dialogs(i.e. byte streams) to determine the fields.
Because the ultimate purpose of EUFuzzer is to identify
fields in packets of proprietary protocols, the semantics of the
protocol for sequence alignment cannot be used to guide the

103753

IEEE Access

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

23A70000000601031019000A 23A7500000DETG31019000A
23A700000017010314123456A123456B123456C123456D123456E12345
1809D00000pEPIG420220007

1B0900000006010420220007

1B090000001101040E345678A345678A

(a) Original Packets

180900000d11p1d40E345678A345678A

(b) Identify Constant Fields

[23A7000000pg01031019000A

23A7P00000) 7@3I4l23456/\1234568123456C|23456D123456E12345 23A7000000) 7 14123456A123456B123456C123456D123456E12345

[1569000600p6fTaAp0220007
(1809000000} 1p1040E345678A345678A

(c) Identify Session-Related Fields

[23A7p00000)os 3 1019000A [23A71poo00d 5613 10190004

[23A7000000)17(01p3 14123456A1234568123456C123456D123456E12345 §£123456A1234568123456C123456D123456£12345 P3ATIP0000G) 7

(18091000000 06 £7)4]20220007 1)p4]20220007 [1809poooodé pip4j20220007
[1Boslpoooog oipdorsasezaazasezen [180s]poooodtiifolp4fdii3ase78A345678A [180glpoooodiifopaii 3456 78A345678A

(d) Amendment for the Session-Related Fields
and Constant Fields

FIGURE 2. The detailed process of fields identification and classification.

matching process. Two different forms of sequence alignment
are employed: global alignment and local alignment. Global
alignment refers to the overall alignment of two sequences
considered as similar, where standard Needleman-Wunsch
algorithm is being used. Local alignment means matching
two sequences with large differences to find the sequence
fragment with the highest similarity. The packets follow
the same protocol but may differ greatly in packet length,
ADU and so on. Smith-Waterman algorithm is selected to
signify the shared information that of the two sequences (byte
streams).

These two alignment algorithms set different weights for
each paired character, depending on whether the two charac-
ters are the same, different, or one of them is a gap. If they
are the same, the weight is set to m; if they are different,
it is n; if one of them is a gap, it is g. The total score
for a possible alignment is the sum of the corresponding
weights. Note that there may be multiple alignments for the
same score. Details of the algorithms can be found in [38].
In general, Smith-Waterman algorithm sets the score for the
same pair to be 2, for the different pair is —1, and for
one gap is —2. While for Needleman-Wunsch algorithm,
the score for the one gap pair is set to 0 to obtain an accu-
rate result when comparing two sequences that are already
considered to be similar. First, the Smith-Waterman algo-
rithm is used to select similar sequences belonging to one
protocol from a packet database. Then Needleman-Wunsch
algorithm is utilitized for further analysis. To gain the
highest accuracy, we set m = 2,n = 0,g = 0 for
Needleman-Wunsch algorithm andm =2,n = —1,g = -2
for Smith-Waterman algorithm. Then similarity matrices are
derived based on observations of evolutionary data on many
sequences using Markov chains among other techniques. The
most common matrices in bioinformatics is Percent Accepted
Mutation (PAM) [37] and BLOcks SUbstitution Matrix
(BLOSUM) [40]. In this paper, after a lot of experiments,
PAM is selected.

S1-3:Packet Fields Identification.

Fig.2 demonstrates the process of fields identification in
detail. We process the requests and the responses respectively,

103754

(e) Identify Length Fields

(f) Identify Mutable Fields

figuring out the constant fields in the first place. By using
“tcp.port == PORT”, we can get the responses classifi-
cation. And we can get the constant fields by using string
alignment algorithms, as is shown in Fig.2(b). Constant
fields remain the same during the test, such as the protocol
identifier.

Secondly, we process packets in a dialog, then we can find
out the session-related fields(See in Fig.2(c)). Session-related
fields are highly correlated with different sessions, such as
session identifier and the sequence number of the packets.
The session-related fields remain the same within a session,
which is the case for session identifier, or in an ascending
order by adding one at a time, which is the case for sequence
number.

After the first and second steps, we utilize the results
accumulated to amend the constant fields and session-related
fields. Fig.2(d) depicts the process.

Then, We use packets of the requests to find the length
fields, and so do the responses, which is demonstrated
in Fig.2(e). Length fields indicate the whole or partial packet,
and need to be recalculated in every reassembled packet.
There are maybe more than one length fields in one packet
and the size of length fields themselves vary from one byte to
more bytes.

The left segments are classified as mutable fields. Mutable
fields are the key elements in our test, which mean the value
of these fields are always manipulated in every reassembled
packet, aiming to trigger bugs in the target under test(See
in Fig.2(f)).

The instance above is an alignment within two simple ses-
sions(or dialogs). Nonetheless, to better understand the struc-
ture of packets, it is of great significance to align them against
multiple sequences. A phylogenetic tree is created to guide
the multiple sequence alignment [41], which is an evolution-
ary tree and demonstrates mutations as time goes on [42].
Network packets change the values of different fields, which
is analogous to the evolutionary process. Unweighted Pair-
wise Mean by Arithmetic Average (UPGMA) [43] algorithm
is chosen to generate the phylogenetic trees, which is com-
monly used in this field. The algorithm is defined as following

VOLUME 7, 2019

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

IEEE Access

E.q.l:

1
di: =
elte)

Y. Dy (1

peCi,qeC;

where dj; is the distance between clusters C; and C; and D,,4is
the Smith-Waterman score.

The tree building process is relatively explicit and can be
refered to see more details.

2) STAGE 2: FUZZING STAGE

During the fuzzing stage, EUFuzzer first parses the incoming
packet, setting the values of different fields and assembles the
packet. Then if sends crafted packets to HMI in a controlled
way and monitors any exceptions or abnormal behaviors of
HMI. The logic process is illustrated in Fig 3.

N

Cencats Send Malformed Exceptions \ Locat.e
Malformed Packets to Target Occur? Excoption
Packets Ll and Repeat

FIGURE 3. The logic Process of EUFuzzer.

S2-1: Packets Assembling.

First, EUFuzzer figures out the value of session-related
fields, and copy the value to the same fields of the response
packets. Then EUFuzzer assigns the value of mutable fields
with elaborately constructed data. The values of constant
fields are pre-given. The assembling process of response
packets is shown in Fig 4.

Constant Fields
Session-Related Fields
Mutable Fields

Length Fields

S

Deliberately
crafted strings

B0 0N

Pt

Remain the same Recalculated in

every packet

Remain constant

in every packet within a session

FIGURE 4. Packet assembling process.

S2-2: Test Strategies. In order to carry out the fuzzing
process effectively, we have tried some modes and strategies.
Mode 1 is that when HMI initializes a request, EUFuzzer
responses with one packet, which is the normal communi-
cation mode and can run smoothly. Mode 2 is that when
HMI initializes a request, EUFuzzer responses with two or
more packets. Mode 3 is that when HMI initializes two or
more requests, EUFuzzer responses with only one packet.
Experiments show that mode 2 and mode 3 do not work well
but it can reveal bugs occasionally.

As for the packets sending strategies, 2 different meth-
ods are employed. One is random strategy, which means
responding packets randomly with the mutable fields crafted.

VOLUME 7, 2019

The other is bit sequential strategy, which means responding
packets sequentially with the mutable fields crafted one bit at
a time. Other options include starting sending packets from a
specific test case or only test a subset of crafted packets. All
the test process can be repeated easily if using the same seed
number again.

S2-3: Agent. Agent guarantees that EUFuzzer plays the
role of server and listens to a specific port. It keeps the long
connection between EUFuzzer and HMI. When there is a
crash, agent is responsible for reconnection and carries on the
test continuously.

S2-4: Exception Monitoring and Recording. = EUFuzzer
takes the Pcap monitor and Ping monitor.Pcap monitor per-
forms network data capture during the fuzzing test iteration,
and the captured data is updated when each iteration starts.
If an error occurs, the captured packet is logged, otherwise the
captured packet is discarded. Pcap files are compatible with
Wireshark and tcpdump so that the contents of the packet
can be analyzed using wireshark or tcpdump to determine
the causes. The Ping monitor will not block until Timeout
is hit. It is useful for validating a target is still up. The last
step of EUFuzzer is to locate the packet(s) that causes the
crash of HMI. EUFuzzer employs binsearch to accelerate this
process. For instance, when the HMI stops work at the 200th
packet, we need to find out which packet is the inducing
factor. EUFuzzer will retest the HMI with 100th to 200th,
then 150th to 200th, then 175th to 200th...until it locates the
packet that causes the crash, for example, the 190th packet.
For the sake of accuracy, EUFuzzer continues this binsearch
from 190th to 200th, to determine whether the last 10 packets
are benign or crash-inducing.

IV. EXPERIMENTAL EVALUATION

Three different experiments have been conducted to evaluate
the performance of EUFuzzer. First, we validate the packet
identification and classification capability of EUFuzzer.
Then, the efficiency of vulnerability discovery of EUFuzzer
is compared with three open source fuzzers: PeachFuzzer(in
souceforge) [9], [44], Fuzzer (maintained by rmadair) [45]
and Radamsa(by Aoh) [46]. The last experiment conducted
is to validate EUFuzzer in real proprietary SCADA protocol
implementation in HMI.

A. THE 1ST EXPERIMENT: PACKET FILEDS
IDENTIFICATION AND CLASSIFICATION

EUFuzzer is similar with PI [47] to some extent in filed
identification. P intends to determine fields in protocol pack-
ets as detailed as possible, while EUFuzzer just wants to
figure out mutable fields, which is more preferable in fuzzing.
For illustrative purpose, Modbus [48] and ICMP [49], [50]
are selected as an example of ‘“blackbox’ protocol as they
are comprehensive and easy to follow. We compare the results
generated by EUFuzzer and PI dissector on captures of these
two public protocols. Both the packet captures of Modbus and
ICMP are consisted of 2000 packets. We randomly separate
these packets into 10 partitions with equal number of packets

103755

IEEE Access

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

TABLE 1. Running times for ICMP and modbus captures.

TABLE 2. Bug distribution in simulation environment.

PI EUFuzzer

Method

real user sys real user ‘ sys

ICMP 0m4.797s | Om4.512s | 0m0.232s | O0m4.587s | Om4.292s | 0Om0.224s

Modbus | 0m37.506s| O0m36.856s| 0m0.356s | Om13.636s| Om13.462s| Om0.095s

in each partition respectively. Then we conduct the experi-
ment and calculate the mean value.

As for the case of ICMP, the results are as follows
(1B = 1byte = 8bits):

« Original ICMP format: [1 B][1 B][2 B][2 B][2 B]

o ICMP format identified by PI: [1 B][1 B][2 B][2 B][1 B]

[1B]
o ICMP format identified by EUFuzzer: [2 B][2 B][2 B]
[2 B]

EUFuzzer divides four types of fields within a packet:
constant fields, session-related fields, length fields, mutable
fields. As the case of ICMP, the fields are tokened in order as:
constant field, mutable field, session-related field, mutable
field.

Due to the fact that the response and request packet format
is not always the same. We identify the fields of packet of
requests and responses respectively of modbus:

« Original Request structure: [2 B][2 B][1 B][1 B][1 B]
[1 B]x B]
« Request fields identified by PI: [2 B][2 B][1 B][1 B]
[1 B][1 B][x B]
o Request fields identified by EUFuzzer: [2 B][3B][1 B]
[1 BI[1 B][x B]
o Original Response structure: [2 B][2 B][1 B][l1 B]
[1 B](1 B][y B]
« Response fields identified by PI: [2 B][2 B][l B]
[1 B][2 B[y B]
« Response fields identified by EUFuzzer: [2 B][3 B][1 B]
[1 B](1 B][1 Bl[y B]
The variables x and y indicate that the field length is not fixed.
We record the time of PI and EUFuzzer for processing
200 packets and calculate the mean value. Table 1 shows that
EUFuzzer is much faster than PI when dealing with Mod-
bus protocol. However, both of them have an approximative
running time with ICMP. Why? The reason is that ICMP
protocol does not have length fields, where the advantage
of EUFuzzer cannot be utilized. Experiments show that the
results are consistent with four types of fields when using
EUFuzzer.

B. THE 2ND EXPERIMENT: VULNERABILITY

DISCOVERY CAPABILITY

Open source library libmodbus [48] is used to build
a modbus client with some simple input validation
and some embedded bugs to verify RUFuzzer’s capa-
bility of wvulnerability discovery. The modbus client

103756

Func Code

0x01 0x02 OxOF 0x06 0x03 0x10 0x17

Bug Type

buffer overflow Y Y Y Y Y Y Y
incomplete packets Y Y Y Y Y Y Y
wrong number N Y Y N Y Y Y
format error N N N Y Y Y Y
wrong function code Y Y Y Y Y Y Y
wrong starting address Y Y Y Y Y Y Y
wrong ending address Y Y Y Y Y Y Y

TABLE 3. Statistics of packets generated by different fuzzers.

Tools total number number running number
packets(T") | of of bug- time of bugs
answered inducing
packets(A) | packets(B)
Randomfuzzer 0o many 11 2 72,000s 1
PeachFuzzer 31,786 10,955 1679 39,733s 34
Fuzzer 3,723 531 149 4,852s 9
Radamsa 10,000 2,154 874 13,221s 29
EUFuzzer 13,561 10,252 5398 16,273s 44

contains all major functions of libmodbus: write_coil(0x01),
read_bits(0x02), write_coils(0xOF), write_register(0x06),
read_register(0x03), write_registers(0x10), read_
registers(0x17). Bug types and their numbers are presented
in Table 2:

Three open source fuzzers: PeachFuzzer [9], [44],
Fuzzer [45] and Radamsa [46] are chosen as comparison.
All these three fuzzers can be used as server to perform
vulnerability mining on clients. We use the Modbus pro-
tocol specification as an input of PeachFuzzervalid pack-
ets as inputs of Fuzzer and Radamsa, for both Fuzzer and
Radamsa are mutation-based fuzzing, while PeachFuzzer is
generation-based fuzzing. Meanwhile, EUFuzzer is feeded
with Modbus captures to classify fields itself. RandomFuzzer,
which is totally randomly mutating the bit, is severed as a
basis. EUFuzzer uses bit sequential strategy. The Random-
Fuzzer mutates all fields of the packet and generates so many
packets that we just run RandomFuzzer for 20 hours as a
baseline.

We define Py, P>, P3 to describe the efficiency of fuzzers.

Py =A/T 2
P, = B/A 3)
P3 = B/T)

P indicates the percentage of answered packets in total,
P, represents the percentage of bug-inducing packets
in answered packets, and P3 reveals the percentage of
bug-inducing packets in total.

RandomFuzzer plays the role of baseline, so we just ana-
lyze the left four tools. As illustrated in Tabel 3, we can find
PeachFuzzer generates the most packets. However, the total
number of packets generated by EUFuzzer is not the least.
We analyze the scheme of the other three fuzzers and draw

VOLUME 7, 2019

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

IEEE Access

Capability of Finding Bugs

Bugs Found
N

/ A
/" Rasadma PeachFuzzer

- Fuzer ——— =7

- RandomFuzzer

1 15 2 25 3 35 4 45 5
Number of Packets(IgN)

(a) Capability and Speed of Finding Bugs

FIGURE 5. Four tools in comparison.

the conclusion that: PeachFuzzer has the sophisticated mutat-
ing mechanism, while the mutation methods of Fuzzer and
Radamsa are relatively simple. Nonetheless, EUFuzzer finds
all bugs while other three tools only find partial. As is
shown in Fig.5(a), EUFuzzer proves itself in vulnerability
mining with high speed. In the light of the statistics presented
in Fig.5(b), EUFuzzer has the highest percentage (up to
75.6%) of packets to pass the input check and answered by
HMI. By the sharp contrast, Fuzzer only has 14.3%. Of all
the answered packets, EUFuzzer retains 52.6% packets to
be effective in triggering bugs, while PeachFuzzer just has
15.3%. What we concern most is the total efficiency, i.e. the
bug-inducing packets of all packets. EUFuzzer can achieve
39.8% while the other three are very low to be below 10%.
And we also verify EUFuzzer on a proprietary protocol—
Step7, which is used in Siemens PLC. Because it is pro-
prietary, we use Snap7 [51] instead. Snap7 is an open
source, 32/64 bit, multi-platform Ethernet communication
suite for interfacing natively with Siemens S7 PLCs. The bug
types we set are (1)wrong data length, (2)wrong data num-
ber, (3)wrong starting address,(4)wrong parameter number,
(5)wrong parameter length. There are only one bug of each
bug type. EUFuzzer uses 79 test cases to trigger all bugs.

C. THE 3RD EXPERIMENT: PRACTICAL APPLICATION OF
PROPRIETARY PROTOCOL IMPLEMENTATION

We conducted this experiment in our lab testbed. This type
of HMI is widely used in Oil and Petrochemical in China,
using a proprietary protocol and we don’t have the specifica-
tion. EUFuzzer communicates with HMI and responds with
crafted packets. Experiment configuration is as follows:

o CPU:Intel XEON3050(2.13)

o Memory:8G

« Disk:500G

o Operation System: WIN 7(x64)
o HMI version:4.0

EUFuzzer and HMI software are implemented on a laptop of
the above configure respectively.

EUFuzzer totally generates 15,361 crafted responses,
of which 11,437 packets are answered. Totally 12 severe
vulnerabilities are found by EUFuzzer. These flaws have been

VOLUME 7, 2019

Percentage

(b) Performance and Efficiency

submitted to the SCADA software vendor and they have
conformed that 4 flaws were zero-day vulnerabilities and
have taken measures to patch up. We repeat our experiment
on different configuration of platforms and find that the per-
formance of the EUFuzzer depends on the configuration of
the platform. Nonetheless, whatever the platform is, the total
packets and bugs are always the same.

V. CONCLUDING REMARKS

EUFuzzer has been tested on some well known protocols and
a few proprietary protocols. The test performance meets our
expectation. Experimental results show that it has good per-
formance both in packet field identification and vulnerability
discovery. However, EUFuzzer also has its own limitations:

1) EUFuzzer has a relatively coarse granularity.
2) EUFuzzer cannot find vulnerabilities caused by several
packets together.

These two problems are interrelated. In our future work,
we will refine the granularity of EUFuzzer to improve the
proportion of semi-valid packets in a more detailed way
and to extend the testing to protocols used in the Internet
of Things [52]-[55] and also investigate the possibility of
increasing the test accuracy [56].

REFERENCES

[1] S.Bratus, A. Hansen, and A. Shubina, “LZfuzz: A fast compression-based
fuzzer for poorly documented protocols,” Tech. Rep., 2008.

[2] R. Shapiro, S. Bratus, E. Rogers, and S. Smith, “Do-it-yourself SCADA
vulnerability testing with LZFuzz,” Tech. Rep., 2017.

[3] B.P.Miller, L. Fredriksen, and B. So, “An empirical study of the reliability
of UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp. 32-44, Dec. 1990.

[4] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan,
and J. Steidl, “Fuzz revisited: A re-examination of the reliability of UNIX
utilities and services,” Dept. Comput. Sci., Univ. Wisconsin-Madison,
Madison, WI, USA, Tech. Rep., 1995.

[S] P. Uhley. A Basic Distributed Fuzzing Framework for FOE. [Online].
Available: https://blogs.adobe.com/security/2012/05

[6] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox fuzzing for
security testing,” Commun. ACM, vol. 55, no. 3, pp. 4044, 2012.

[7]1 D. J. Conger, K. Srinivasamurthy, and R. S. Cooper, “Distributed file
fuzzing,” U.S. Patent 7 743 281, Jun. 22, 2010.

[8] T. Proell, “Fuzzing proprietary protocols: A practical approach,” in Proc.
Secur. Educ. Conf. Toronto, 2010.

[9] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, vol. 34, 2011.

[10] G. Devarajan, “Unraveling SCADA protocols: Using sulley fuzzer,” in

Proc. Defon 15 Hacking Conf, 2007, pp. 1-40.

103757

IEEE Access

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

D. Aitel, “An introduction to spike, the fuzzer creation kit,” Tech. Rep.,
Aug. 2002.

R. Koch. (2016). Profuzz. [Online]. Available: https://github.com/HSASec/
ProFuzz

G. Devarajan. Sulley Fuzzing Framework. [Online]. Available: http://code.
google.com/p/sulley

SecuriTeam. Securiteam Software Testing Framework. [Online]. Available:
http://www.beyondsecutity.com/black-box-testing.html

Digital Bond. iccpsic Assessment Tool. [Online]. Available: http://www.
digitalbond.com/2007/08/28/iccpsic-assessment-tool-set-relacased/

Mu Dynamics. Mu Test Sutie. [Online]. Available: http://mudynamics.
com/products/Mu-Test-Suite.html

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Proc. NDSS, vol. 16,
2016, pp. 1-16.

1. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing for
overflows: A guided fuzzer to find buffer boundary violations,” in Proc.
22nd USENIX Secur. Symp. (USENIX Secur.), 2013, pp. 49-64.

M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, ““Scheduling black-
box mutational fuzzing,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2013, pp. 511-522.

A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in Proc. 23rd
USENIX Secur. Symp. (USENIX Secur.), 2014, pp. 861-875.

H. Dantas, Z. Erkin, C. Doerr, R. Hallie, and G. van der Bij, “eFuzz:
A fuzzer for DLMS/COSEM electricity meters,” in Proc. 2nd Workshop
Smart Energy Grid Secur., 2014, pp. 31-38.

W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android
malicious apps and categorizing benign apps with ensemble of classifiers,”
Future Gener. Comput. Syst., vol. 78, pp. 987-994, Jan. 2018.

X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, “Privacy risk analysis and
mitigation of analytics libraries in the Android ecosystem,” IEEE Trans.
Mobile Comput., to be published.

W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Explor-
ing permission-induced risk in Android applications for malicious appli-
cation detection,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1869-1882, Nov. 2014.

W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang, “Droidensemble:
Detecting Android malicious applications with ensemble of string and
structural static features,” IEEE Access, vol. 6, pp. 31798-31807, 2018.
X. Wang, W. Wang, Y. He, J. Liu, Z. Han, and X. Zhang, ““Characterizing
Android apps’ behavior for effective detection of malapps at large scale,”
Future Gener. Comput. Syst., vol. 75, pp. 3045, Oct. 2017.

X. Liu, J. Liu, W. Wang, Y. He, and X. Zhang, “Discovering and under-
standing Android sensor usage behaviors with data flow analysis,” World
Wide Web, vol. 21, no. 1, pp. 105-126, 2018.

W. Wang, M. Zhao, and J. Wang, “Effective Android malware detection
with a hybrid model based on deep autoencoder and convolutional neural
network,” J. Ambient Intell. Hum. Comput., to be published.

W. Wang, J. Liu, G. Pitsilis, and X. Zhang, “Abstracting massive data
for lightweight intrusion detection in computer networks,” Inf. Sci.,
vols. 433-434, pp. 417430, Apr. 2018.

W. Wang, Y. He, J. Liu, and S. Gombault, “Constructing important features
from massive network traffic for lightweight intrusion detection,” IET Inf.
Secur., vol. 9, no. 6, pp. 374-379, 2015.

W. Wang and R. Battiti, “Identifying intrusions in computer networks with
principal component analysis,” in Proc. Ist Int. Conf. Availability, Rel.
Secur. (ARES), Apr. 2006, pp. 270-279.

W. Wang, T. Guyet, R. Quiniou, M.-O. Cordier, F. Masseglia, and
X. Zhang, “‘Autonomic intrusion detection: Adaptively detecting anoma-
lies over unlabeled audit data streams in computer networks,” Knowl.-
Based Syst., vol. 70, pp. 103-117, Nov. 2014.

W. Wang, X. Guan, and X. Zhang, “Processing of massive audit data
streams for real-time anomaly intrusion detection,” Comput. Commun.,
vol. 31, no. 1, pp. 58-72, 2008.

W. Wang, X. Guan, X. Zhang, and L. Yang, “Profiling program behavior
for anomaly intrusion detection based on the transition and frequency prop-
erty of computer audit data,” Comput. Secur., vol. 25, no. 7, pp. 539-550,
2006.

C. Rohlf. Quemod. [Online]. Available: https://github.com/struct/QueMod
R. Shapiro, S. Bratus, E. Rogers, and S. Smith, “Identifying vulnerabilities
in SCADA systems via fuzz-testing,” in Proc. Int. Conf. Crit. Infrastruct.
Protection. Springer, 2011, pp. 57-72.

103758

(37]

(38]
(391

[40]

[41]

[42]

(43]

(44]
(45]
[46]

[47]
(48]

(49]
(50]
(51]

[52]
(53]

[54]

[55]

[56]

M. Dayhoff, R. Schwartz, and B. Orcutt, “22 a model of evolution-
ary change in proteins,” in Atlas of Protein Sequence and Structure,
vol. 5. National Biomedical Research Foundation Silver Spring, 1978,
pp. 345-352.

M. A. Beddoe, “Network protocol analysis using bioinformatics algo-
rithms,” in Proc. ToorCon, 2004.

W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent
adaptive replay of application dialog,” in Proc. NDSS, 2006, pp. 1-15.

S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices
from protein blocks,” Proc. Nat. Acad. Sci. USA, vol. 89, no. 22,
pp. 10915-10919, 1992.

Wikipedia. Multiple Sequence Alignment. [Online]. Available: https://en.
wikipedia.org/wiki/Multiple-sequence-alignment

M. Gouy, S. Guindon, and O. Gascuel, “SeaView version 4: A multiplat-
form graphical user interface for sequence alignment and phylogenetic tree
building,” Mol. Biol. Evol., vol. 27, no. 2, pp. 221-224, 2009.

M. Steinbach, M. S. G. Karypis, and V. Kumar, “A comparison of docu-
ment clustering techniques,” in Proc. KDD Workshop Text Mining, Boston,
MA, USA, vol. 400, 2000, pp. 525-526.

Peach Community. Peach Fuzzer Community Edition. [Online]. Available:
https://sourceforge.net/projects/peachfuzz/files/Peach/

Rmadair. Fuzzer Maintained by Rmadair. [Online]. Available: https://
github.com/rmadair/fuzzer

Radamsa. A General-Purpose Fuzzer Called Radamsa. [Online]. Avail-
able: https://github.com/aoh/radamsa

M. Beddoe, “The protocol informatics project,” Tech. Rep., 2004.
Modbus Organzation. A General-Purpose Fuzzer Called Radamsa.
[Online]. Available: http://www.modbus.org/

Wikipedia. Internet Control Message Protocol. [Online]. Available:
https://en.wikipedia.org/wiki/Internet-Control-Message-Protocol

A. B. Forouzan, Data Communications and Networking. New York, NY,
USA: McGraw-Hill, 2006.

Davide Nardella. Step7 Open Source Ethernet Communication Suite.
[Online]. Available: http://snap7.sourceforge.net/

R. H. Weber and R. Weber, Internet of Things, vol. 12. Springer, 2010.

G. Q. Xu, Y. Zhang, A. K. Sangaiah, X. H. Li, A. Castiglione, and
X. Zheng, “CSP-E2: An abuse-free contract signing protocol with low-
storage TTP for energy-efficient electronic transaction ecosystems,” Inf.
Sci., vol. 476, pp. 505-515, Feb. 2019.

G. Q. Xu, J. Liu, Y. R. Lu, X. J. Zeng, Y. Zhang, and X. M. Li, “A novel
efficient MAKA protocol with desynchronization for anonymous roaming
service in global mobility Networks,” J. Netw. Comput. Appl., vol. 107,
pp. 83-92, Apr. 2018.

X. Zeng, G. Xu, X. Zheng, Y. Xiang, and W. Zhou, “E-AUA: An efficient
anonymous user authentication protocol for mobile IoT,” IEEE Internet
Things J., vol. 6, no. 2, pp. 1506-1519, Jun. 2018.

C. Zhang, C. Liu, X. Zhang, and G. Almpanidis, “An up-to-date com-
parison of state-of-the-art classification algorithms,” Expert Syst. Appl.,
vol. 82, pp. 128-150, Oct. 2017.

JIAPING MEN received the B.S. degree from the
North China University of Science and Technol-
ogy, China, in 1999, and the M.S. degree from
Sichuan University, China, in 2010. He is currently
pursuing the Ph.D. degree with the School of Com-
puter and Information Technology, Beijing Jiao-
tong University, China. His main research interests
include in security and privacy in cloud computing.

VOLUME 7, 2019

J. Men et al.: Finding Sands in the Eyes: Vulnerabilities Discovery in loT With EUFuzzer on HMI

IEEE Access

GUANGQUAN XU received the Ph.D. degree
from Tianjin University, in March 2008. He is
currently pursuing the Ph.D. degree with the
Tianjin Key Laboratory of Advanced Networking
(TANK), College of Intelligence and Computing,
Tianjin University, China, where he is also a Full
Professor. He is also the Director of Network
Security Joint Lab and the Network Attack and
Defense Joint Lab. His research interests include
cyber security and trust management. He has
published 70+ papers in reputable international journals and conferences,
including the IEEE IoT-J, FGCS, IEEE Accgkss, PUC, JPDC, and the
IEEE Murrivepia. He is a member of the CCF. He served as a TPC
Member for the IEEE UIC 2018, SPNCE2019, IEEE UIC2015,
IEEE ICECCS 2014, and reviewers for journals, such as IEEE Access,
ACM TIST, JPDC, IEEE TITS, Soft Computing, FGCS, and Computational
Intelligence.

ZHEN HAN received the Ph.D. degree from the
China Academy of Engineering Physics, in 1991.
He is currently a Professor with the School
of Computer and Information Technology of
Beijing Jiaotong University. He has authored or
co-authored over 100 papers in various journals
and international conferences. His main research
interests include information security architecture
and trusted computing.

ZHONGHAO SUN received the Ph.D. degree
from the Northwestern Polytechnical University,
in 2017. He is currently an Engineer with the
National Computer Network Emergency Response
Technical Team/Coordination Center of China
(known as CNCERT or CNCERT/CC). He has
authored or co-authored over 20 papers in various
journals and international conferences. His main
research interests include cyber security and indus-
trial control system (ICS) security.

VOLUME 7, 2019

XIAOJUN ZHOU received the B.S. degree in elec-
tric power engineering from the Shanghai Uni-
versity of Electric Power, in 2008, and the M.S.
and Ph.D. degrees in cyberspace security from
the University of Chinese Academy of Sciences,
in 2015 and 2018, respectively.

He is currently an Assistant Researcher with
the Institute of Information Engineering of the
Chinese Academy of Sciences and an Application
Engineer of DCS. His research interests include
the industrial control protocol security analysis, industrial internet security,
the Internet of Things security. He is also responsible for or participated
in several industrial security projects, including a series of major scientific
research projects, such as the National Natural Science Foundation Projects,
the National Key Research and Development Plan, and the Key Research
and Development Projects of the Chinese Academy of Sciences. He led the
research team to conduct in-depth research on protocol security and achieved
many results, and published several papers in domestic and foreign journals.
In the 2015 EICS+ industrial control system information security attack
and defense competition, he received the third prize. And he achieved the
Excellence Award in the 2016 “BEWG Cup” second national industrial
control system information security attack and defence competition.

WENJUAN LIAN received the master’s degree
and doctor’s degree from the Shandong University
of Science and Technology, in 2002 and 2011,
respectively. She is currently pursuing the Ph.D.
degree with the College of Computer Science
and Engineering, Shandong University of Science
and Technology, where she is also an Associate
Professor. She has published 20+ papers in core
’ journals and international conferences, finished
L IB®2 10+ national and provincial projects, published 3

books. Her research interests include deep learning and cyber security.

XIAOCHUN CHENG (SM’04) received the
B.Eng. degree in computer software engineering
and the Ph.D. degree in computer science from
Jilin University, in 1992 and 1996, respectively.
He has been with the Computer Science EU
Project Coordinator, Middlesex University, since
2012. He is currently a member of IEEE SMC
Technical Committee on Enterprise Information
Systems, IEEE SMC Technical Committee on
Computational Intelligence, IEEE SMC Technical
Committee on Cognitive Computing, IEEE SMC Technical Committee on
Intelligent Internet Systems, IEEE Communications Society Communica-
tions and Information Security Technical Committee, BCS Information
Security Specialist Group, BCS Cybercrime Forensics Specialist Group, and
BCS Attificial Intelligence Specialist Group.

103759

	INTRODUCTION
	RELATED WORK
	DESIGN OF EUFUZZER
	THEORETICAL BASIS
	ARCHITECTURE OF EUFUZZER
	STAGE 1: IDENTIFICATION STAGE
	STAGE 2: FUZZING STAGE

	EXPERIMENTAL EVALUATION
	THE 1ST EXPERIMENT: PACKET FILEDS IDENTIFICATION AND CLASSIFICATION
	THE 2ND EXPERIMENT: VULNERABILITY DISCOVERY CAPABILITY
	THE 3RD EXPERIMENT: PRACTICAL APPLICATION OF PROPRIETARY PROTOCOL IMPLEMENTATION

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	JIAPING MEN
	GUANGQUAN XU
	ZHEN HAN
	ZHONGHAO SUN
	XIAOJUN ZHOU
	WENJUAN LIAN
	XIAOCHUN CHENG

